# National Exams December 2013

## Communications

#### 3 hours duration

#### NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is a Closed Book Exam but one aid sheet is allowed written on both sides. An approved calculator is permitted.
- 3. There are six questions, however, FIVE (5) questions constitute a complete paper. The first five questions as they appear in the answer book will be marked.
- 4. All questions are of equal value.
- 5. Clarity and organization of the answer are important.

1. (Total 20 marks) A periodic signal x(t) is expressed as

$$x(t) = 2\cos t + \cos(3t - \frac{2\pi}{3}) + 2\cos(8t + \frac{2\pi}{3})$$

- (a) (10 marks) Sketch the amplitude and phase spectra for the trigonometric Fourier series.
- (b) (5 marks) By inspection of spectra in part (a), sketch the exponential Fourier series spectra.
- (c) (5 marks) By inspection of spectra in part (b), write the exponential Fourier series for x(t).

### Communications, December 2013

2. (Total 20 marks) Over an interval  $|t| \leq 1$ , an angle modulated signal is given by

$$\varphi_{EM}(t) = 10\cos 12,000t$$

It is known that the carrier frequency  $\omega_c = 10,000$ . The m(t) is modulating signal.

- (a) (10 marks) If this were a PM (phase modulation) signal with  $k_p = 1000$ , determine m(t) over the interval  $|t| \leq 1$ .
- (b) (10 marks) If this were an FM (frequency modulation) signal with  $k_f = 1000$ , determine m(t) over the interval  $|t| \leq 1$ .

- 3. (20 marks total) A signal  $x(t) = sinc^2(10\pi t)$  is sampled (using uniformly spaced impulses) at a rate of (i) 10 Hz; (ii) 20 Hz; (iii) 30 Hz. For each of the three case:
  - (a) (5 marks) Sketch the sampled signal.
  - (b) (5 marks) Sketch the spectrum of the sampled signal.
  - (c) (5 marks) Explain whether you can recover the signal x(t) from the sampled signal.
  - (d) (5 marks) If the sampled signal is passed through an ideal low-pass filter of bandwidth 10 Hz, sketch the spectrum of the output signal.

4. (Total 20 marks) Let  $X(j\omega)$  denote the Fourier transform of the signal x(t) depicted in the Figure 1.

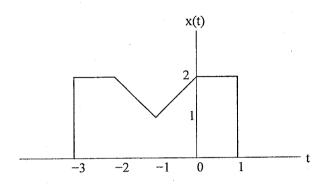



Figure 1:

- (a) (4 marks) Find  $\angle X(j\omega)$ .
- (b) (4 marks) Find X(j0).
- (c) (4 marks) Find  $\int_{-\infty}^{\infty} X(j\omega)d\omega$ .
- (d) (4 marks) Evaluate  $\int_{-\infty}^{\infty} X(j\omega) \frac{2\sin\omega}{\omega} e^{j2\omega} d\omega.$
- (e) (4 marks) Evaluate  $\int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$ . (You may use properties of the Fourier transform to perform all these calculations)

5. (Total 20 marks) Consider a right-sided sequence x[n] with z-transform

$$X(z) = \frac{1}{(1 - \frac{1}{2}z^{-1})(1 - z^{-1})}.$$

- (a) (10 marks) Carry out a partial-fraction expansion of the equation given above which is expressed as a ratio of polynomials in  $z^{-1}$ , and from this expansion determine x[n].
- (b) (10 marks) Rewrite the equation X(z) given above as a ratio of polynomials in z, and carry out a partial-expansion of X(z) expressed in terms of polynomials in z. From this expansion, determine x[n], and demonstrate that the sequence obtained is identical to that obtained in part (a).

- 6. (Total 20 marks) Consider a radio transmitter rated for  $S_T \leq 3$  kW ( $S_T$  is average transmitted power) and  $A_{max}^2 \leq 8$  kW ( $A_{max}^2$  is peak envelope power). Let the modulating signal be a tone with  $A_m = 1$ 
  - (a) (5 marks) What is  $S_x$ , message power?
  - (b) (5 marks) If the modulation is DSB, what is the maximum possible power per sideband  $(P_{sb})$ ?
  - (c) (10 marks) Let the modulation signal be a square wave that switches periodically between x(t) = +1 and x(t) = -1. Sketch  $x_c(t)$  when
    - i. the modulation is AM with  $\mu = 0.5$  ( $\mu$  is modulation index),
    - ii. the modulation is AM with  $\mu = 1$ , and
    - iii. the modulation is DSB.

Indicate the envelopes by dashed lines.