National Exams December 2016

07-Elec-A5, Electronics

3 hours duration

Notes:

- 1. If any doubt exists as to the interpretation of any question, the candidate is urged to submit, within their answer, a clear statement of any assumptions made.
- 2. This is a **CLOSED BOOK EXAM**. Any non-communicating calculator is permitted.
- 3. Answer all **FIVE** (5) questions.
- 4. All questions are worth 20 marks each.
- 5. Please start each question on a new page and clearly identify the question number and part number, e.g. Q4(a).
- 6. In schematics, ground and chassis may be assumed to be common, unless specifically stated otherwise.
- 7. Unless otherwise specified, assume that Op-Amps are ideal and that supply voltages are ±15V.
- 8. If questions require an answer in essay format, clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.

Elec-A5, Electronics

December 2016

QUESTION (1)

Given $V_Z = 6.8$ V at $I_Z = 5$ mA, $r_Z = 20\Omega$, and for M1, $I_{ZK} = 0.1$ mA for D_{ZI} . $V_{TH} = 1$ V, K = 2mA/V², and $\lambda = 0$. $V_{DD} = 20$ V and $v_{ripple} = \pm 1$ V

(a) Determine the average dc output voltage V_{OUT} .

(b) What is the ripple voltage at the output?

(20 points)

Useful formulae: for n-channel MOSFET

$i_{DS} = K$	$(v_{GS} - V_{TH})v_{DS} - \frac{1}{2}v_{DS}^2$
$i_{DS} = \frac{1}{2} K \left(v_{GS} - V_{TH} \right)^2 \left(1 + \lambda v_{DS} \right)$	

triode region saturation region

QUESTION (2)

(a) Assuming the op amp is ideal, derive an expression for the output voltage v_o , if the input voltage is given by $v_{in} = V_I \sin(\omega t)$

(10 points)

(b) In the circuit shown, the input offset voltage of the op amp is ±5 mV, otherwise the amplifier can be considered ideal. Find the output offset voltage.

(10 points)

December 2016

Elec-A5, Electronics

QUESTION (3)

The transistor has $\beta = 100$ and $r_o = 40 \text{k}\Omega$

- (a) Determine the DC voltages at the base, emitter and collector of the transistor V_B , V_E and V_C .
- (b) Draw a small-signal model of the circuit and use it to determine the approximate amplitude of the output voltage if v_{in} is a 10mV, sinusoidal signal of 500 kHz. Note that $\omega L \ll 20 k\Omega$ at 500kHz.

(20 Points)

QUESTION (4)

The two MOSFETs are identical with

 $V_{TH} = 2V$, $K = 0.1 \text{mA/V}^2$, and $\lambda = 0$.

- a) Find I_D and V_G of Q_2
- b) Find I_D and V_D of Q_1
- c) Find g_m of Q_1 and Q_2

Elec-A5, Electronics

December 2016

QUESTION (5)

The diodes are ideal except with an on-voltage of 0.7V. The input voltage source v_{IN} is a 100Hz, 50% duty cycle square-wave with voltage levels of 0V and +10V. The load resistance, $R = 100\Omega$.

- a) If the ripple voltage, $V_r = 0.5$ V, sketch the output waveform for several input cycles. What is the average DC output voltage v_O . (6 points)
- b) What would be the minimum value of C (in μ F) required to keep $V_r \le 0.5$ V? (4 points)
- c) Sketch the current waveform for i_{DI} flowing through diode D_I . Indicate the time interval that the capacitor is charging. (6 points)
- d) What is the overall average current (i_{D3}) flowing through diode D_3 ? (4 points)