National Examinations - May 2016

98-Civ-B7, Highway Engineering

3 Hour Duration

NOTES

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumptions made.
2. Any data, not given but required, can be assumed.
3. This is an "OPEN BOOK" examination. Any non-communicating calculator is permitted.
4. A total of five solutions is required. Only the first five as they appear in your answer book will be marked.
5. All questions are of equal value.
6. For non-numerical questions, clarity and organization of the answer are important.

Marking Scheme

1. (a) 15 marks.
(b) 5 marks.
2. 20 marks.
3. (a) 6 marks.
(b) 14 marks.
4. 20 marks.
5. (a) 10 marks.
(b) 10 marks.
6. (a) 12 marks
(b) 8 marks.
7. (a) 7 marks
(b) 7 marks
(c) 6 marks
8. (a) A vertical curve is to be designed to join a $+1.5 \%$ and -2% grade along a two-lane highway RCU80. Calculate the minimum length of the curve based on minimum required Stopping Sight Distance (SSD). Assume the height of driver's eye $=1.05 \mathrm{~m}$ and the height of object $=0.380 \mathrm{~m}$.
(b) If the tangents of the above highway intersect at station $200+15$, calculate the stations of the BVC (beginning of vertical curve) and EVC (End of Vertical Curve) (The distance between stations in this problem is $\mathbf{3 0} \mathbf{~ m}$)
9. A two-lane highway UCU80 is 7.5 m wide with a cross-slope of $0.02 \mathrm{~m} / \mathrm{m}$. A point of intersection (PI) exists at station $30+000.000$ with a deflection angle of 25°. A horizontal circular curve is required to connect the two tangents (without spiral).

Design the curve and develop the superelevation (max of $0.04 \mathrm{~m} / \mathrm{m}$) by rotating about its center line. Use horizontal scale of 1 to 500 and a vertical scale of 1:5. Show and calculate the stations at
a) the beginning of the tangent runout
b) the junction of tangent to transition length
c) the beginning of the circular curve
d) the end of the circular curve
(the distance between stations is $\mathbf{1 0 0 0} \mathbf{~ m}$)
3. (a) A minor road intersects a 7.5 m wide two-lane highway URU80 where the intersection is controlled by a stop sign. Calculate the required minimum sight distance along the major road (URU80) from the intersection based on the following:

- Perception and reaction time of the driver is 2.5 seconds
- Distance from the near edge of the pavement of URU80 to the front of the stopped vehicle $=3.0 \mathrm{~m}$
- Assume single unit trucks or buses (SU-9) with a length of 9.1 m traveling on the minor road
(b) Describe the possible reasons for each of the following types of pavement distress and state whether the distress is classified as structural or functional:

For Asphalt Pavement:

(i) Bleeding
(ii) Fatigue cracking
(iii) Polished aggregate
(iv) Rutting

For Concrete Pavement:

(i) D-cracking
(ii) Pumping
(iii) Map cracking

Table B.3.1.4a
Superelevation and minimum spiral parameter, $e_{\text {max }}=0.04 \mathrm{~m} / \mathrm{m}$

$e_{\text {max }}=0.04$

Notes

e is superelevation
A is spiral parameter in metres
NC is normal cross section
RC is remove adverse crown and superelevate at
normal rate
Spiral length, $L=A^{2} \div$ Radius
Spiral parameters are minimum and higher values
may be used
For 6-lane pavement: above the dashed line use 4-
lane values, below the dashed line use 4 -lane values $\times 1.15$.
A divided road having a median less than 3 m may
be treated as a single pavement.
4. A flexible pavement section is to be designed for four-lane highway (two lanes in each direction) with a one-way average daily traffic (ADT) of 8000 , truck volume of 5%, and an annual growth in traffic volume of 2% over the design period of 20 years. The pavement is to be constructed on a subgrade with modulus of resilience of 34.5 MPa or 5000 psi .
(a) Calculate the total truck volume in the design lane over the design period
(b) If the average Equivalent Single Axle Load (ESAL) per truck is 2 ESAL, calculate the design ESAL
(c) Assuming a flexible pavement that consist of 100 mm asphalt concrete with a layer coefficient of $0.42,300 \mathrm{~mm}$ road base with a layer coefficient of 0.14 , and 400 mm subbase with layer a layer coefficient of 0.10: use AASHTO method to check if this pavement is adequate for the intended traffic and design period. Assume a reliability of 90%, an overall standard deviation S_{0} of 0.49 , an initial serviceability of 4.5 and terminal serviceability of 2.6.
5. (a) The following is a gradation of subgrade soil. The subbase material planned to be used has a D_{15} of 2.1 mm . Check if subgrade intrusion (subgrade intrudes into subbase) will be an issue if this subbase is used

Sieve Size	Passing
2.0 mm	100%
300 um	85%
150 um	60%
75 um	42%
40 um	15%

(b) Smooth plastic pipe of 4 inches in diameter with roughness coefficient of 0.01 is placed at 2.5% slope in a trench drain. If outlets are provided every 300 ft , what is the maximum allowable lateral inflow into the plastic pipe in $\mathrm{ft}^{3} / \mathrm{day} / \mathrm{ft}$.
6. (a) The bulk density of an asphalt concrete mix was determined experimentally and found to be $2366 \mathrm{~kg} / \mathrm{m}^{3}$. The maximum density is $2448 \mathrm{~kg} / \mathrm{m}^{3}$. The specifications require air voids content within the range of 3% to 5% and a percent voids filled with asphalt (VFA) in the range from 65% to 75%. Check if this mix meets the specified volumetric requirements given the following:

- Asphalt content $=5.5 \%$ (expressed as $\%$ of total mix)
- Relative density of combined aggregates $=2.65$
- Relative density of asphalt $=1.04$
(b) Specifications require a 95% subgrade compaction on a project. Maximum dry density and the optimum moisture content were determined in the lab and found to be $1800 \mathrm{~kg} / \mathrm{m}^{3}$ and 9%, respectively. Results from the field test showed a wet density of $1850 \mathrm{~kg} / \mathrm{m}^{3}$ and a moisture content of 12%. Is the compaction satisfactory?

7. (a) Draw a graph to show the effect of traffic or age on serviceability or structural capacity of a flexible pavement with a design period of 20 years. On the same graph, show the effect of an overlay constructed at the end of the 20 years on serviceability, and the effects of traffic over the following 15 years (no values are needed).
(b) A condition survey was carried out on an existing flexible pavements and the following layer coefficients were assigned to each of the layer as follows:

Layer	Thickness	Coefficient
Asphalt concrete	100 mm	0.32
Roadbase	300 mm	0.10
Subbase	400 mm	0.08

- Calculate the effective structural number of the pavement
- Calculate the required thickness of asphalt overlay if the future structural number is 120 mm . Assume a layer coefficient of 0.42 for new asphalt layer.
(c) A concrete mix has a compressive strength of 5000 psi. Estimate the modulus of rupture and the modulus of elasticity of this mix.

