A fatigue assessment is based on two fundamental components: the analysis of fatigue actions and fatigue resistance of the welded structure. On the load side, the fatigue actions can be given in the form of forces on the component, nominal stress in the section, structural hot-spot stress at a weld toe, notch stress at an effective weld notch or stress intensity at a crack tip. The exact knowledge of the actions is one of the greatest unknowns and a source of many uncertainties. On the resistance side, the properties may be given by way of the Wohler (S-N) curve or crack propagation material parameters for fracture mechanics assessment. The knowledge of working conditions and the fatigue resistance is essential for the successful fatigue design and assessment of welded and notched components.
The workshop will consider both elements of fatigue assessment in-detail. Assessment techniques such as Nominal Stress (S-N), the Hot Spot Stress and the Effective Notch Method will be covered in depth using real assessment examples. Hot topics such as cycle counting procedures, cumulative damage, and the use of the Finite Element method for the fatigue assessment will be discussed. The workshop will offer a forum for discussions of individual fatigue problems and case studies. The workshop is an ideal add-on to the seminar for those interested in expanding their understanding of the subject and design calculation skills.
Ideally, everything required to design a component or structure would be is usually covered by published standards. For various reasons, however, design standards do not usually prescribe the “optimal” design solution for every situation leaving designers with variety of options. This seminar will provide a guideline on the use of some of the commonly used design standards and fatigue life prediction techniques with plenty of hands-on guidance for designers and fabricators. It will give an overview of key methods to improve fatigue performance at the design and fabrication stage. In the case studies, everyday fractures and cracks in engineering objects will be discussed. Methods to optimize fatigue performance and fabrication cost of welded joints will be discussed in the last session of the seminar, with demonstrations of software and reference to useful websites. Delegates are encouraged to bring along their fatigue problems to contribute to discussions and local case studies.
- Basic concepts of the S-N methodology.
- Stress quantities used for fatigue analysis of weldments (nominal stress, hot spot stress, stress concentration).
- Analysis and definition of representative stress/loading history.
- Fatigue damage analysis.
- Design against fatigue failure, and
- The use of fatigue computer programs.
Basic courses on mechanics of materials and stress analysis, material science.
The seminar is particularly relevant to people involved in design, optimization, and fatigue assessment of steel structures and machinery components. Therefore, the attendance is recommended to designers, structural engineers, mechanical engineers, fabricators, welding engineers, quality control, maintenance and inspection personnel, university lecturers, students, and researchers.
The seminar might be useful to the following industry sectors: steel construction, infrastructure fabrication and maintenance, bridge building, transport industry, power generation, machinery, shipbuilding, maintenance and aviation industry, ground vehicles, and earth moving machinery.
Professor, Department of Mechanical and Mechatronics Engineering, University of Waterloo
Dr. Glinka has been with the University of Waterloo, Ontario, Canada, since 1989. He was a Post-Doctoral Fellow at The University of Iowa (USA) in 1978 and has also lectured at the University of Metz, France and at the University College London, England. He holds a PhD and D.Sc. from the Warsaw University of Technology. He has also acted as an expert of the United Nations and visiting professor at The Aalto University in Helsinki, Finland. Dr. Glinka is a specialist in fracture and fatigue of steel structures and mechanical engineering machinery. His research interests include fracture of materials, fatigue of structures, multiaxial fatigue and creep of engineering materials, computer aided design, FEM-elastic-plastic stress-strain analysis, and reliability. His recent research activities concern modeling of fatigue crack growth under random loading and fatigue optimization of welded structures. Dr. Glinka has published over 190 related articles in technical journals and textbooks.