

Ad # Safety-Critical-Software_COVERS 07 Jul 2020 0924 100% APPROVED BY
FIlE NAME TRIM DA COlOuRS BIG AD/CD
Safety-Critical-Software_COVERS.indd lmf C M Y K
ClIENT BlEED AD PIC INFO

EngGeoBC th
WRITER PROD

DOCKET lIVE PR FONTS

ENG COR hm
DESCRIPTION FOlDS TO PAGE SEPS RuN OuTPuT

EngGeoBC Practice Guidelines 8-1/2” x 11” c of d PROOFREAD ClIENT

PuB NOTES

DDB CANADA 1600 – 777 HORNBY STREET, VANCOuVER, BC, CANADA V6Z 2T3 T 604 687 7911 F 604 640 4344

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 i

PREFACE

These Professional Practice Guidelines – Development
of Safety-Critical Software were developed by
Engineers and Geoscientists British Columbia (the
Association) to guide professional practice related
to the discipline of Software engineering. More
specifically, these guidelines provide guidance for
Engineering Professionals involved in the specification,
design, implementation, verification, deployment, or
maintenance of Safety-Critical Software. These
guidelines focus on the application of engineering
practice to Software engineering in Safety-Critical
applications.

In order to protect the public, these guidelines identify
the standard of practice to be followed by Engineering
Professionals when developing Safety-Critical
Software. Furthermore, these guidelines reference
standards that apply to areas of practice associated
with Safety-Critical systems, but do not necessarily
require compliance to those standards for any
particular project.

The scope of these guidelines includes some treatment
of Software security topics for Safety-Critical Software.
In modern Safety-Critical Software-Intensive Systems,
Safety and security are often interdependent and
complementary. The scope of Software security
guidance is limited to the extent of which it is required
to ensure Safety in the system(s) in question.

This document was prepared for the information of
Engineering Professionals, statutory decision-makers,
regulators, the public, and other stakeholders who
might be involved in, or have an interest in, the
development of Safety-Critical Software in British
Columbia.

These guidelines outline the appropriate standard of
practice to be followed at the time that they were
prepared. This is a living document that is to be revised
and updated as required in the future, to reflect the
developing state of practice.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 ii

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 iii

TABLE OF CONTENTS

PREFACE i

ABBREVIATIONS v

DEFINED TERMS vi

VERSION HISTORY viii

1.0 INTRODUCTION 1

1.1 PURPOSE OF THESE GUIDELINES 1

1.2 ROLE OF ENGINEERS
AND GEOSCIENTISTS BC 2

1.3 INTRODUCTION OF TERMS 2

1.3.1 Safety-Critical Software 2

1.4 SCOPE OF THESE GUIDELINES 3

1.4.1 Industry-Specific Practice 3

1.4.2 Hardware 3

1.4.3 Software Security 4

1.4.4 Software Engineering Process 4

1.5 APPLICABILITY OF THESE GUIDELINES 4

1.6 ACKNOWLEDGEMENTS 5

2.0 ROLES AND RESPONSIBILITIES 6

2.1 COMMON FORMS OF PROJECT
ORGANIZATION 6

2.2 RESPONSIBILITIES 6

2.2.1 Clients 6

2.2.2 Software Engineers 7

2.2.3 Software Developers 7

2.2.4 Software Verification 8

2.2.5 Specialist Roles 8

3.0 GUIDELINES FOR
PROFESSIONAL PRACTICE 10

3.1 OVERVIEW 10

3.2 SOFTWARE ENGINEERING PROCESSES AND
LIFE CYCLE 10

3.2.1 Phases of Safety-Critical Software
Development 10

3.2.2 Use of Third-Party Software Artifacts 14

3.3 SAFETY ENGINEERING FOR SAFETY-
CRITICAL SOFTWARE 16

3.3.1 Hazard Analysis 16

3.3.2 Risk and Criticality Analysis 19

3.3.3 Reliability Engineering 20

3.3.4 Safety Cases 21

3.4 SECURITY ACTIVITIES FOR
SAFETY-CRITICAL SOFTWARE 23

3.4.1 Security Risk and Threat Analysis 23

3.4.2 Security Controls and Policies 24

3.4.3 Security Verification and Validation 25

3.4.4 Security Assurance Cases 25

3.4.5 Assessment of Third-Party Libraries 25

3.5 OBSERVATION OF DEFICIENCIES 26

3.6 RELEVANT EXTERNAL STANDARDS AND
GUIDELINES 26

4.0 QUALITY MANAGEMENT IN
PROFESSIONAL PRACTICE 29

4.1 QUALITY MANAGEMENT REQUIREMENTS 29

4.1.1 Professional Practice Guidelines 29

4.1.2 Use of Seal 29

4.1.3 Direct Supervision 31

4.1.4 Retention of Project Documentation 32

4.1.5 Documented Checks of Engineering and
Geoscience Work 33

4.1.6 Documented Field Reviews During
Implementation or Construction 33

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 iv

5.0 PROFESSIONAL REGISTRATION &
EDUCATION, TRAINING, AND EXPERIENCE 34

5.1 PROFESSIONAL REGISTRATION 34

5.2 EDUCATION, TRAINING, AND EXPERIENCE 34

5.2.1 Educational Indicators 35

5.2.2 Experience Indicators 35

5.2.3 Examples of Education and Experience 35

6.0 REFERENCES AND RELATED DOCUMENTS 37

6.1 REGULATIONS 37

6.2 REFERENCES 37

6.3 CODES AND STANDARDS 38

6.4 RELATED DOCUMENTS 39

7.0 APPENDIX 41

LIST OF APPENDICES

Appendix A: Authors and Reviewers .. 43

LIST OF FIGURES

Figure 1: Block Diagram of an Electronic Brake Controller System .. 18

Figure 2: Sample Risk and Criticality Table ... 20

Figure 3: Sample Safety Case Argument Using Goal-Structuring Notation ... 22

LIST OF TABLES

Table 1: Definitions of Risk Likelihood and Severity Categories ... 20

Table 2: List of Relevant External Standards and Guidelines ..27

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 v

ABBREVIATIONS

ABBREVIATION TERM

BC British Columbia

FMEA failure mode and effects analysis

FTA fault tree analysis

GSN goal-structuring notation

HAZOP hazard and operability study

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

RTOS real-time operating system

STPA system theoretic process and analysis

UML Unified Modeling Language

XML Extensible Markup Language

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 vi

DEFINED TERMS

The following definitions are specific to these guidelines. These words and terms are capitalized throughout
the document.

TERM DEFINITION

Accident An event or sequence of events that culminate in one of the following:
1) harm, injury, illness, or death to one or more persons; or
2) damage to the environment.

Act Engineers and Geoscientists Act [RSBC 1996], Chapter 116.

Association The Association of Professional Engineers and Geoscientists of the Province of
British Columbia, also operating as Engineers and Geoscientists BC.

Bylaws The Bylaws of the Association made under the Act.

Causal Factor An action, omission, event, or condition of a system during its operation within
its deployed environment or during its development that contributes to the
occurrence of a Hazard.

Client The party who commissions a Software engineering work.

Engineering Professional(s) Professional engineers and licensees who are registered or licensed by the
Association and entitled under the Act to engage in the practice of professional
engineering in British Columbia.

Engineers and Geoscientists BC The business name of the Association.

Hazard A set of conditions or an operational situation that might lead to an Accident.

Residual Risk The Risk remaining after all implemented mitigations have been applied to the
system.

Risk A combination of two factors:
1) the severity of an anticipated Accident resulting from a Hazard; and
2) the likelihood of a Hazard occurring and leading to Accident (alternatively

referred to as “exposure”).

Safety Freedom from unacceptable Risk of an Accident occurring due to
non-malicious causes.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 vii

TERM DEFINITION

Safety-Critical Refers to an engineering work or element of a system that meets one of more of
the following criteria:
1) the item’s incorrect response, inadvertent response, failure to respond,

out-of-sequence response, or response in combination with other
responses is capable of contributing to a Hazard;

2) the item is intended to mitigate the effect of a Hazard or result of an
Accident; and/or

3) the item is intended to recover from the occurrence of a Hazard or
Accident.

See also Section 1.3.1 Safety-Critical Software.

Software One or more digitally encoded instructions that are executed by a computer or
similar computing hardware

Software Engineer An Engineering Professional qualified by education, training, and/or
experience who is engaged in the application of a systematic, disciplined, and
quantifiable approach to the specification, design, implementation,
verification, deployment, or maintenance of Software.
For the purposes of these guidelines, a Software Engineer is an Engineering
Professional engaged in the development of a Safety-Critical Software system,
regardless of their registered discipline and declared areas of expertise with
the Association.

Software-Intensive System A system whose function depends on the execution of a principal Software
element to achieve the desired objective.

Source Code One or more commands expressed in a programming language that may be
interpreted, compiled, or assembled into Software.

Threat Anything that might exploit a vulnerability to breach security and cause a
Hazard.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 viii

VERSION HISTORY

VERSION
NUMBER

PUBLISHED DATE DESCRIPTION OF CHANGES

1.0 July 16, 2020 Initial version.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 1

1.0 INTRODUCTION

Engineers and Geoscientists British Columbia (the
Association) is the regulatory and licensing body for
the engineering and geoscience professions in British
Columbia (BC). To protect the public, the Association
establishes, maintains, and enforces standards for
the qualifications and practice of its registrants.

The Association provides various practice resources
to its registrants to assist them in meeting their
professional and ethical obligations under the
Engineers and Geoscientists Act (the Act). One of
those resources are professional practice guidelines,
which establish the standard of practice for specific
professional activities. The Association works with
experts in their fields to develop professional practice
guidelines where additional guidance is beneficial or
required.

Across many application domains and industries,
Software forms an integral part of Safety-Critical
systems. In such systems, Software has an essential
role in system functions that have the potential to
cause harm to persons or to the environment. These
systems may be referred to as “Safety-Critical
Software-Intensive Systems.” Given the Risk associated
with Safety-Critical systems, it is important that
engineering work involving Software be undertaken by
qualified and experienced Engineering Professionals.

1.1 PURPOSE OF THESE GUIDELINES

This document provides guidance on professional
practice to Engineering Professionals who are involved
in the specification, design, implementation,
verification, deployment, or maintenance of Safety-
Critical Software.

Following are the specific objectives of these
guidelines:

1. Describe the standard of practice that Engineering
Professionals should follow when providing
professional services related to Safety-Critical
Software.

2. Specify the tasks and/or services that Engineering
Professionals should complete to meet the
appropriate standard of practice and fulfill their
professional obligations under the Act. These
obligations include the Engineering Professional’s
primary duty to protect the Safety, health, and
welfare of the public and the environment.

3. Describe the roles and responsibilities of the
various participants/stakeholders involved in
Safety-Critical Software. The document should
assist in delineating the roles and responsibilities
of the various participants/stakeholders, which
may include the Software Engineer, developers,
the client, and others.

4. Define the skill sets that are consistent with the
training and experience required to provide
professional services in relation to Safety-Critical
Software.

5. Provide guidance as to how Engineering
Professionals should communicate the outcomes of
their professional activities related to Safety-
Critical Software, including the use of declaration
documents as described in Section 4.1.2 Use of
Seal, so that stakeholders are properly informed
that the appropriate considerations have been
addressed (both regulatory and technical) for the
specific professional activities that were carried
out.

6. Provide guidance on how to meet the quality
management requirements under the Act and
Bylaws when carrying out the professional
activities identified in these professional practice
guidelines.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 2

1.2 ROLE OF ENGINEERS

AND GEOSCIENTISTS BC

These guidelines were prepared by subject matter
experts and reviewed at various stages by a formal
review group. The final draft of the guidelines
underwent a final consultation process with various
committees and divisions of the Association. These
guidelines were approved by the Association’s Council
and, prior to publication, underwent final legal and
editorial reviews. These guidelines form part of
Engineers and Geoscientists BC’s ongoing commitment
to maintaining the quality of professional services that
Engineering Professionals provide to their clients and
the public.

An Engineering Professional must exercise professional
judgment when providing professional services; as
such, application of these guidelines will vary
depending on the circumstances, including where
project- or application-specific conditions need to be
addressed or in the event that there are changes in
legislation or regulations subsequent to the publication
of these guidelines. Where an Engineering Professional
intends to substantially deviate from applying these
guidelines, consideration should be made to obtain a
second opinion on the merits of the deviation.

The Association supports the principle that appropriate
financial, professional, and technical resources should
be provided (that is, by the client and/or the employer)
to support Engineering Professionals who are
responsible for carrying out professional activities, so
they can comply with the standard of practice outlined
in these guidelines. These guidelines may be used to
assist in the level of service and terms of reference of
an agreement between an Engineering Professional and
a client.

These guidelines are intended to assist Engineering
Professionals in fulfilling their professional obligations,
especially regarding the first principle of the
Association’s Code of Ethics, which is to “hold
paramount the safety, health and welfare of the public,
protection of the environment and promote health and

safety in the workplace.” Failure to meet the intent of
these guidelines could be evidence of unprofessional
conduct and lead to disciplinary proceedings by the
Association.

1.3 INTRODUCTION OF TERMS

Note that the terms defined in this section are likewise
provided in many other articles and standards found in
the literature. For the purposes of these guidelines, the
terms defined below represent the interpretation of
these terms in the context of this document.

Also see the Defined Terms section at the front of the
document for a full list of definitions specific to these
guidelines.

1.3.1 SAFETY-CRITICAL SOFTWARE

Software is almost always used to fulfill a larger
purpose. That is, Software’s existence is usually
necessitated by the needs of a larger technical, social,
scientific, or economic system. As a result, the level of
Risk associated with the Software must be derived from
Risks inherent to the use of the Software within a larger
system. Some types of Software also have the potential
to contribute to harm to life and health of the public or
harm to the environment (for example, an Accident);
such Software is considered to be Safety-Critical
Software.

Specifically, Safety-Critical Software is defined as
meeting one or more of the following conditions:

• Software whose incorrect action, inadvertent
response to stimuli, failure to respond when
required, out-of-sequence response, or response
in combination with other responses is capable of
contributing to a Hazard

• Software that is intended to mitigate the effect of
a Hazard or the result of an Accident

• Software that is intended to recover from the
occurrence of a Hazard or the result of an Accident

For example, Software deployed in a nuclear power
generation facility that is intended to intervene if the

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 3

reactor overheats would probably be considered
Safety-Critical. Similarly, Software that translates
braking inputs from a human to the braking actuators
in an automobile likely would be considered Safety-
Critical. Conversely, the Software in a video game
would not likely be considered Safety-Critical.

The above definitions of Accident and of Safety-Critical
Software do not explicitly consider the potential for
loss or damage of property or the potential for
economic or financial loss. For example, financial
Software that tabulates an organization’s bi-monthly
payroll might contribute to a financial loss due to
incorrect calculations; however, in such a scenario,
it is unlikely that harm to a person’s health or life, or
harm to the environment, would occur. Indeed, the
potential for property and/or financial loss is worthy
of serious consideration by Engineering Professionals
who have an obligation to uphold the public well-being
in these matters. However, the ramifications of these
types of losses are beyond the scope of these
guidelines.

Furthermore, the above definitions of Accident and
of Safety-Critical Software do not explicitly include
“mission-critical” Software; that is, Software whose
failure might compromise the overall objectives
(“mission”) of a person, business, organization, or
government. There may be certain circumstances
where mission-critical Software could also be
considered Safety-Critical; however, if the mission-
critical Software performs only non-Safety functions,
it would not meet the definition of Safety-Critical
Software.

Importantly, the above definitions require that
Engineering Professionals engaged in creating
Safety-Critical Software use their judgment to identify
the potential for an Accident and, as a result, apply
appropriate techniques and methods throughout the
life cycle of the Software to eliminate or mitigate
Safety Risks.

1.4 SCOPE OF THESE GUIDELINES

These guidelines apply to Engineering Professionals
involved in the specification, design, implementation,
verification, deployment, or maintenance of Safety-
Critical Software in BC. In particular, guidance is
provided with respect to the Safety of Software for use
within a Safety-Critical system whose function depends
on Software.

These guidelines are not intended to provide step-by-
step instructions for providing Software engineering
services. Rather, these guidelines outline
considerations for professionals engaged in Software
engineering work. See Section 1.5 Applicability of
These Guidelines.

1.4.1 INDUSTRY-SPECIFIC PRACTICE

These guidelines aim to be generic with respect to
application domain and therefore should be considered
a supplement to engineering practices required in a
specific industry (for example, compliance with ISO
26262 Road Vehicles – Functional Safety is required by
most automotive manufacturers in North America and
Europe). It is the responsibility of the Engineering
Professional to ensure up-to-date and relevant
industry-specific engineering standards are considered
during Software engineering work.

1.4.2 HARDWARE

The Safety and security of the overall system within
which the Safety-Critical Software is deployed
(including but not limited to other mechanical,
electrical, electronic, or integrated systems) is not
wholly addressed by these guidelines.

Such system elements are only considered to the
extent that their behaviours and their interfaces with
the Safety-Critical Software may influence the Software
engineering approaches, methods, and processes that
are applied to mitigate Safety Risks for the overall
system.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 4

This scope restriction applies to systems and
components, not to individuals who are involved in
creating or maintaining systems and components.
Engineering Professionals who specialize in
mechanical, electrical, or electronic systems may
also be involved in creating and maintaining Software.
These guidelines would then apply to the extent that
the Software has a Safety-Critical role in the system
in question, regardless of the declared discipline of
practice of the Engineering Professional.

1.4.3 SOFTWARE SECURITY

The protection of Software (and associated data)
from inadvertent or malicious actions of an agent falls
within the purview of what is called “Software
security.” Software security is a broad field with a
wide range of applications, not all of which apply to
Safety-Critical Software.

These guidelines consider the security of Safety-Critical
Software to the extent that security is required to
maintain the safe operation of the Software. For
example, it is likely that Safety-Critical Software
involved in the control of a hydroelectric-power–
generation facility should include security measures to
limit the ability of malicious agents (persons or
Software) to cause an Accident.

These guidelines recognize that Safety-Critical
Software is deployed into a larger system context, and
thus the security features inherent in the Safety-Critical
Software are only a portion of the overall system
security profile.

Software is often used as part of a system that involves
the storage or transmission of sensitive personal or
corporate information or data. The failure of Software
to protect the privacy of such information might be
detrimental to public welfare. As noted in Section 1.3.1
Safety-Critical Software above, unless privacy of the
information or data in question is required to maintain
safe operation of the Software, these guidelines do not
apply. For example, the release of sensitive financial
data might result in economic loss for the affected
persons or corporations. However, unless the

associated Software is considered Safety-Critical, the
privacy of this information is not considered by these
guidelines.

1.4.4 SOFTWARE ENGINEERING PROCESS

These guidelines describe a combination of engineering
processes and techniques that should be followed when
creating and maintaining Safety-Critical Software.
Importantly, these guidelines focus on properties of the
processes and techniques used to create the Software,
rather than on the properties of the resulting Software
itself. This perspective is consistent with many
industry-specific standards for Safety-Critical Software.

For example, due to the complexity of most Software, it
is often infeasible to verify the individual behaviour of
the Software for each possible set of inputs. Instead, a
combination of several verification activities (for
example, testing or peer review) are mandated as part
of a larger engineering process. Confidence in the
behaviour of the resulting Software under all
operational conditions is increased by the knowledge
that a process with an appropriate level of rigour was
followed to create and maintain the Software, along
with appropriate provisions for ongoing maintenance
and in operation service support.

1.5 APPLICABILITY OF THESE

GUIDELINES

These guidelines provide guidance on professional
practice for Engineering Professionals who carry out
Safety-Critical Software engineering. These guidelines
are not intended to provide systematic instructions for
how to carry out these activities; rather, these
guidelines outline considerations to be aware of when
defining and subsequently carrying out the activities
required to develop Safety-Critical Software.

An Engineering Professional’s decision not to follow
one or more aspects of these guidelines does not
necessarily mean a failure to meet his or her
professional obligations. Such judgments and decisions

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 5

depend upon weighing facts and circumstances to
determine whether other reasonable and prudent
Engineering Professionals, in similar situations, could
have conducted themselves similarly.

Engineers Canada (EC 2016) provides the following
position as to whether or not a Software development
project should be considered Software engineering:

“In the case of software engineering, a piece
of software (or a Software Intensive System)
can therefore be considered an engineering
work if both of the following conditions are
true:

− The development of the software required
‘the application of a systematic,
disciplined, quantifiable approach to the
development, operation, and maintenance
of software.

− There is a reasonable expectation that
failure or inappropriate functioning of the
system would result in harm to life,
health, property, economic interests, the
public welfare or the environment.”

The standard of practice that these guidelines define in
relation to Safety-critical Software satisfies the first
condition above, and the definition of Safety-Critical
Software in Section 1.3.1 satisfies the second condition.
As such, the Association considers all Safety-Critical
Software projects to contain engineering work that
must be conducted by an Engineering Professional.

Further details regarding the nature of the Software
engineering work required for such projects are
described in subsequent sections of these guidelines.

1.6 ACKNOWLEDGEMENTS

These guidelines were prepared on behalf of the
Association by primary authors who are subject matter
experts practicing in this field.

This document was also reviewed by a group of
technical experts, as well as by various committees and
divisions of the Association.

Authorship and review of these guidelines does not
necessarily indicate the individuals and/or their
employers endorse everything in these guidelines.

See Appendix A: Authors and Reviewers for a list of
contributors.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 6

2.0 ROLES AND RESPONSIBILITIES

This section describes common roles and
responsibilities of various persons or organizations
who typically contribute to the creation of Safety-
Critical Software. Note that the roles and
responsibilities identified below are a sample of
those currently found in industrial settings so should
not be considered a comprehensive list.

2.1 COMMON FORMS OF PROJECT

ORGANIZATION

Roles and responsibilities might vary from project to
project, and may vary significantly depending on the
type of project execution model (for example, agile,
scrum, or waterfall methodologies). Other project
methodologies may combine, separate, or duplicate
the responsibilities described below to suit the specific
methodology being used by the project. However, in
doing so, it is vital that the overall project
organizational structure addresses the professional
practice requirements described in Section 3.0
Guidelines for Professional Practice and the quality
management requirements in Section 4.0 Quality
Management in Professional Practice.

The discussion in this section is focused on roles that
may be attributed to organizations or persons, and
mostly reflects a waterfall type of development model
and project management methodology. Although job
titles may in some cases imply a particular role, this
will not necessarily be the case. It is possible for one
person to assume more than one of the roles below,
provided they have the appropriate qualifications and
experience.

2.2 RESPONSIBILITIES

2.2.1 CLIENTS

Clients typically commission Safety-Critical Software
engineering work. The commissioned work may
constitute a standalone system or be part of a larger
engineering effort.

In these guidelines, a Client is defined as any party
that commissions Software engineering work. This
could include, but is not limited to, an independent
person or organization, a separate department within
the same organization, or an individual person (such as
a manager) within the same department of an
organization. Importantly, a client is not required to be
technically qualified or skilled in the practice of Safety-
Critical Software engineering.

The client should:

• define the overall scope and design of the system
under development;

• define the deliverables to be produced as part of
Software engineering work;

• ensure allocation of system and/or Safety
requirements to the commissioned Safety-Critical
Software;

• accept Software engineering artifacts (for example,
specifications, Source Code, binaries, verification
evidence, analysis reports) prepared or created as
part of the Software engineering work;

• where applicable, ensure the proper management
of aspects of system engineering work that fall
outside the explicit scope of the Safety-Critical
Software project (for example, a client might be
responsible for assurance cases prepared for the
entire system, which might include assurance
cases for Safety-Critical Software); and

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 7

• where applicable, ensure proper collaboration is
provided regarding design decisions that have a
shared impact between the Software and the
larger system.

Note that it is not required that clients (or those acting
on behalf of clients) be Engineering Professionals.
However, in the event that the responsibilities and
activities of the client constitute engineering work
(as is often the case), the client must be an Engineering
Professional, or an Engineering Professional should be
engaged to directly supervise and assume
responsibility for the client’s engineering work.

2.2.2 SOFTWARE ENGINEERS

Software Engineers, as defined in these guidelines, are
typically engaged in the design and implementation of
commissioned Safety-Critical Software or components
of the Safety-Critical Software.

The responsibilities of a Software Engineer typically
include those listed below and the elements discussed
in Section 3.0 Guidelines for Professional Practice.

Software Engineers should:

• specify, review, and refine Software requirements
and Software designs based on inputs from clients;

• resolve (or participate in resolving) design trade-
offs that affect the Safety-Critical Software;

• plan, manage, and undertake the implementation
of Source Code and binary generation mechanisms
(and related artifacts such build scripts);

• conduct, plan, and manage Software verification
activities;

• conduct, plan, and manage analyses of the
Software or related artifacts (for example, conduct
a security analysis or perform a timing analysis for
a real-time system);

• conduct, plan, and manage integration activities,
both internal to the Software and with respect to
deployment into the target environment;

• conduct, plan, and manage maintenance of Safety-
Critical Software; and

• prepare assurance cases for the Safety-Critical
Software.

Software Engineers must undertake to define the risks
inherent in Software projects that they are involved
with, and must make reasonable effort to oversee
particular elements of the project at a level
commensurate with the assessed risks.

Activities performed by this role may be delegated
under the principle of direct supervision, as described
in Section 4.1.3.

2.2.3 SOFTWARE DEVELOPERS

For the purposes of these guidelines, Software
developers are typically engaged in the creation and
partial verification of Source Code and Software
binaries (and related artifacts).

In this role, Software developers should:

• participate in defining requirements and design
specification(s);

• participate in implementing design trade-offs that
affect the Safety-Critical Software;

• create Source Code and related artifacts;

• create unit tests to accompany the Source Code;

• create binaries or manage utilities that create
binaries; and

• review Source Code (or related artifacts), utilities,
or unit tests.

Individuals who actively create Source Code have a
critical role in ensuring the Safety of Software.
Individuals fulfilling the Software developer role may
be highly specialized and have a deep knowledge of the
technologies being employed (such as programming
language, hardware interfaces, algorithms). As a result,
they may make decisions about the function of the
Software that cannot reasonably be expressed by
Software requirements or design. Therefore, this role
may contain work that must be directly supervised by
a Software Engineer.

The title of “Software developer” might have other
meaning(s) outside the context of Safety-Critical

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 8

Software projects. Consideration of additional
activities associated with this title for other types of
Software projects are beyond the scope of these
guidelines.

2.2.4 SOFTWARE VERIFICATION

Verification of Software is concerned with ensuring the
Source Code or generated Software binaries satisfy the
specified requirements or design.

Individuals participating in Software verification
should:

• participate in the planning and management of
Software verification activities;

• create and review Software verification plans or
specifications (such as test specifications),
including choosing verification techniques and
environments;

• configure, manage, and document Software
verification environments and instrumentation;

• perform Software verification according to
applicable specifications;

• prepare Software verification reports (and related
artifacts); and/or

• participate in the creation of Software assurance
cases related to Software verification and testing.

Note that Software testing is one of many possible
verification activities that can be employed. Other
techniques might include formal verification, code
inspection, or static and dynamic analysis.

The verification of Software is a critical aspect of
Software engineering for Safety-Critical systems.
Modern verification techniques and related utilities
and instrumentation are highly complex, and demand
a deep level of knowledge and skill, so individuals who
perform Software verification may be highly
specialized. Furthermore, in a Safety-Critical context,
inadequate Software verification could result in
otherwise preventable defects being present in the
final version of the Software. Therefore, this role may
contain work that must be directly supervised by a
Software Engineer.

2.2.5 SPECIALIST ROLES

Software engineering is a complex field with numerous
speciality areas. It is not reasonable to expect an
individual Software Engineer to have the level of
competency demanded by some Safety-Critical
applications across all specialties of Software
engineering.

Indicators that the project involves a specialty area of
Software engineering that might require engaging a
specialist include:

• the speciality area is not considered part of a
standard Software engineering undergraduate
curriculum;

• the speciality area requires an advanced degree,
professional certificate, and/or extensive practical
experience to develop the prerequisite knowledge
required to practice the subspecialty;

• the speciality area is an active area of research
that requires practitioners to read specialized
academic journals and regularly attend
conferences to maintain competency; and/or

• the speciality area involves unique domain- or
application-specific knowledge that limits the
available resource pool.

Where possible, the Software Engineer should engage
a specialist with an appropriate combination of skills,
education, and experience. The specialist may then
deliver a specific aspect of the engineering work
specified by the Software Engineer.

It is permissible for a specialist to contribute to a
project with an appropriate level of autonomy from the
Software Engineer provided the following criteria are
satisfied:

• The specialist has a combination of skills,
education, and experience that is demonstrated by
appropriate verifiable credentials and work history
that is acceptable to the Software Engineer.

• The Software Engineer is able to define or agree to
a clear scope and expectations for the work to be
conducted by the specialist, including adherence
to expected quality requirements and guidelines.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 9

Ideally, this involves allocating explicit
requirements to the specialist, and itemizing
deliverables that will result from the specialist’s
work.

• The work undertaken by the specialist has a
restricted scope, so the extent to which the work
impacts aspects of the greater project can be
clearly defined and understood by the Software
Engineer. Any interface work performed between
the subspecialty domain and the wider project is
performed under the direct supervision of the
Software Engineer.

• The findings and conclusions of the specialist’s
work are expressed using language that can be
understood by an individual with a level of
knowledge expected of a reasonable Software
Engineer.

• Where relevant, the specialist provides compliance
information regarding allocated technical
requirements.

• The Software Engineer reviews the work of the
specialist, based on a level of knowledge expected
of a reasonable Software Engineer, and ensures
compliance with applicable quality requirements
and guidelines.

For example, a specialist with expertise in formal
Software verification might be engaged to
mathematically demonstrate that certain properties of
the Software requirements, design, or implementation
are satisfied. The output of such an analysis might be a
report prepared by the specialist that describes the
methods employed, provides detailed technical results,
and summarizes (at a level that can be understood by a
reasonable professional) the specialist's findings.

In many cases, industry interest groups or technical
societies have been formed to address specific
sub-specialities of Software engineering. For example,
the Institute of Electrical and Electronics Engineers
(IEEE) maintains a number of special interest groups on
these topics. Software Engineers seeking a specialist
might benefit from contacting these groups or societies.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 10

3.0 GUIDELINES FOR

PROFESSIONAL PRACTICE

3.1 OVERVIEW

This section describes the processes and activities
required to meet the standard of practice for
developing Safety-Critical Software. Broadly, the
sections are presented according to Software
engineering processes, Safety activities, security
activities, and relevant external standards and
guidelines.

3.2 SOFTWARE ENGINEERING

PROCESSES AND LIFE CYCLE

Many Software engineering process models and project
management methodologies exist (such as agile, scrum,
or waterfall). Different process models can be applied
successfully in different contexts, when properly
selected and managed.

Rather than recommending a particular process model,
these guidelines identify essential phases that are
accepted within process models; any Safety-Critical
Software development process must include
consideration of these phases in some form.

3.2.1 PHASES OF SAFETY-CRITICAL SOFTWARE
DEVELOPMENT

The following phases are identified in these guidelines:

• Elicitation of Software requirements
• Development of Software architecture
• Development of Software Source Code
• Generation of Software binaries
• Verification of Software
• Maintenance of Software

The selected Software engineering processes and life
cycle management approaches should be considered
within the context of a larger system’s engineering
effort.

Each phase is discussed below, and outlines
recommended activities associated with the particular
phase. Note that these guidelines do not aim to be a
complete reference for Software life cycle phases.
Instead, they capture a minimum set of
recommendations for each phase. Software life cycle
phases may execute consecutively or concurrently, and
combinations thereof, as appropriate. Some of the
phases as described may be omitted, may not apply, or
may be combined and adapted, based on the details of
a particular project. However, the overall Software
engineering principles should still apply. Practitioners
may employ additional activities or techniques based
on company policies or industry standards.

3.2.1.1 Elicitation of Software Requirements

Fundamentally, requirements describe what the
Software must do, so the elicitation of Software
requirements represents an important phase of any
Software project. However, in many Safety-Critical
systems, Software forms only part of the functionality
of the overall system. Therefore, it is also important
that system-level requirements be defined and then
decomposed, where appropriate, to create lower-level
Software requirements. It should be noted that not all
system requirements are Safety requirements.

Requirements usually refrain from describing the
internal design of the system, in that the requirements
view the design as a black box and make statements
about inputs and outputs. However, the development of

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 11

some design, such as the high-level architecture of the
system, is usually a prerequisite for defining
requirements. In this context, the definition of
requirements and design of some aspects of the
Software are essentially coupled. Iteration between
the requirements and design phases is acceptable,
provided changes to the requirements and design are
considered in a systematic manner and all changes
are documented.

During this phase of the Software engineering life cycle,
high-level security-Threat modelling should be
performed to identify and understand possible avenues
of attack for the system. Likewise, high-level Safety-
analysis activities should identify any Hazards and the
functions required to mitigate those Hazards.
Requirements that address any identified Threats and
Safety mitigations should be included with the system
and Safety requirements.

Requirements for functionality, Safety, quality, and
security cannot always be decoupled and must be
defined simultaneously. Software Engineers should be
aware of the shared roles of such requirements.

Software Engineers should ensure Software
requirements have the following properties:

• Each requirement is assigned a unique identifier.

• Each requirement is stated precisely to avoid
ambiguity; this might include using formal or
semi-formal notations for describing the
requirements; for example, by using boilerplate
requirements, templates, or controlled natural
language.

• Where possible, requirements are expressed as
atomic statements. That is, requirements do not
use logical connectors to join statements that
could otherwise be expressed as individual
requirements.

• Requirements are envisaged in the context of the
entire system and, where applicable, developed
with input from stakeholders.

• Each requirement is verifiable, meaning that a
verification test procedure (manual or automated)

can be performed to verify the requirement is
satisfied by the Software.

• A systematic process is in place to manage and
track changes to the Software requirements
baseline and to flow changes on to the Software
development and verification phases.

ISO/IEC/IEEE 29148 Systems and Software Engineering
– Life Cycle Processes – Requirements Engineering
provides a process standard that describes the
requirements engineering process.

3.2.1.2 Development of Software Architecture

Software architecture describes the structure of a piece
of Software. Architecture exists at all levels of Software
design, from high-level conceptual definitions to
detailed definitions of Source Code elements.

During development, some level of abstraction is used
to conceptualize a Software architecture, which allows
Software Engineers to reason about the structure of the
Software without becoming overwhelmed by details.

At minimum, Software Engineers should ensure these
practices are followed when developing Software
architecture:

• All elements of the Software architecture are
traceable to at least one requirement, and
elements are clearly marked with the
requirement(s) from which they are derived.

• The Software architecture is expressed in a
systematic and precise form; the use of semi-
formal notation (such as UML) is highly
recommended.

• An appropriate level of abstraction is selected
for the Software architecture description.

• The Software architecture considers multiple
perspectives, so the static structures and dynamic
behaviours of the Software are comprehensively
described.

• The Software architecture considers interfaces
with other systems and/or hardware elements,
including the systems into which, or the hardware
onto which, the Software will be deployed.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 12

• Quality attributes are described that are important
for the Software to fulfill and establish how the
architecture addresses the quality attributes.

• Well-known design patterns and/or approaches are
considered, where appropriate; for example, a
monitor component utilizing a heartbeat signal is
commonly used to assess the availability of a
system.

• Programming languages (and other relevant
Software technologies) are determined during
Software architecture development, and
appropriate programming languages and utilities
are chosen for the system.

• A systematic version control system is used to
manage and track changes to Software
architecture.

• The completed Software architecture undergoes
assessment to confirm that defined Safety and
security requirements are met, and that new
vulnerabilities or Hazards have not been
introduced during the architecture development
phase.

3.2.1.3 Development of Software Source Code

Development of the Software Source Code focuses
on translating the requirements and architecture into
machine-interpretable instructions, typically using a
programming language. In some cases, executable
models or specifications may be used (for example,
MATLAB©) to automatically generate Source Code from
a detailed design, provided that in the judgment of the
Software Engineer the tool proposed for use allows
these guidelines to be followed.

It is common practice to create a Software
development plan to define project-specific processes.
At minimum, Software Engineers should ensure these
practices are followed when developing Source Code:

• A programming language that is suitable for the
application is chosen, and the impact of
programming language constructs is considered
(for example, typing, decomposition mechanisms,
control flow).

• A relevant coding standard (such as MISRA C or
SEI CERT C) is used to standardize Source Code
conventions and reduce the likelihood of defects
being created during Source Code development.
Such a standard includes both stylistic and code
best practices (for example, initialization of
variables to known value before use). Any
deviations from industry coding standard are
documented, if applicable.

• All Source Code is traceable to an architectural
element defined by the Software architecture and
can ultimately be traced back to a Software
requirement, and Source Code that can not be
traced to an architectural element and/or a
requirement is removed.

• Source Code reviews and inspections are
conducted by qualified individuals using a
systematic approach. Where relevant, static
analysis tools may be used to analyze large
amounts of Source Code. A systematic inspection
methodology might then focus on inspecting
notifications raised by the static analysis tool(s).

• Configuration data and files are considered to be
Source Code regardless of the language in which
they are written (for example, an XML file with
Software configuration data that is consumed by
a C program is considered Source Code).

• A systematic version-control system is used to
manage and track changes to Software Source
Code.

3.2.1.4 Generation of Software Binaries

Once the Source Code has been developed, typically
one or more binaries are generated that will be
executed on a specific hardware platform. This step is
conducted by one or more additional Software tools,
such as a compiler or an assembler.

In cases where Source Code is interpreted (rather than
compiled) by another piece of Software, the guidance
in this section might not directly apply. Therefore,
Software Engineers working with interpreted Source
Code should consider the following guidance and may
adapt it, as required.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 13

Software Engineers should ensure these practices are
considered, when generating Software binaries from
Source Code:

• An argument is made for the acceptability, quality,
and integrity of the tool that will be used to
generate binaries; where possible, only qualified
tools are applied (meaning those that meet
relevant Software quality standards).

• The availability of high-quality tools used to
generate binaries is considered when choosing a
programming language(s) for developing the
Software Source Code.

• Software artifacts related to the binary generation,
such as configuration files or build scripts/utilities,
are treated with the same care and rigour as the
primary Source Code.

• Tools related to generation of binaries are clearly
described in the Software documentation, which
includes the names and versions of the tools, the
scripts and utilities used, and the environment
(such as an operating system) within which the
tools must be deployed.

• Repeatability and independence of the binary
generation process is considered; this may be
facilitated by using automated build utilities.

• Binaries are uniquely identified and labelled, so
their source inputs are noted and the binary’s use
in testing activities and subsequent distribution to
other project parties and/or the client is traceable.

In some applications, input data (as well as a binary)
dictate the Software’s behaviour. It is possible to have
very simple Source Code for the Software along with
data that significantly impacts the correct function of
the Software. For example, the schedule for a traffic
light (data) could be fairly complex, yet the Source
Code controlling the traffic light might be very simple.
Consequently, an error in the input data could
contribute to an Accident. In these scenarios, per
Section 3.2.1.3 Development of Software Source Code
above, the input data should be treated as part of the
Software itself, and be subject to an appropriate
engineering process.

3.2.1.5 Verification of Software

Verification of Software focuses on ensuring the
Software will behave as specified in the requirements
and interface control documents. Verification
techniques may be applied during all life-cycle phases.
At minimum, verification activities should focus on
substantiating the outputs of the requirements,
architecture, and Source Code phases of the life cycle.

Software Engineers should ensure these practices are
followed with respect to verification of Software:

• A verification plan is created that details the
verification techniques to be applied at each phase
of the Software life cycle. Deviations from this plan
are documented along with a rationale for the
deviation.

• Verification is conducted on the requirements to
ensure they are free of conflicts, complete, and
consistent. Requirements may be verified using
systematic inspection or design review, semi-
formal techniques, and/or formal techniques
(for example, application of formal logic).

• Verification is conducted on the Software
architecture to ensure it is free of conflicts and is
complete and correct with respect to the
requirements. The architecture may be verified
using systematic inspection or design review,
semi-formal techniques, and/or formal techniques.

• Software Source Code units (for example, a
function, method, procedure, or class) are tested
by exercising the Source Code on multiple diverse
inputs to ensure the unit’s Source Code fulfills its
designed intent.

• Integration testing is used to verify collections of
many units to ensure the units collectively fulfill
the designed intent and requirements.

• A set of tests of the Software Source Code exists
for each functional requirement of the Software to
ensure the requirement was successfully
implemented.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 14

• Formal Source Code verification methods (for
example, Hoare logic) may be applied to gain
additional confidence in the correctness of the
Source Code.

• Where applicable, hardware-in-the-loop testing is
used to determine that the Software behaves as
required on the hardware upon which it will be
deployed.

• The statement and branch coverage of Source Code
tests is measured using an appropriate metric; a
high level of coverage is desirable. The acceptable
level of coverage is based on the requirements for
the application.

• Records of all verification activities are kept, which
include a description of the verification conducted
and relevant results.

Often, the tasks of binary generation (see Section
3.2.1.4) and Software verification are combined using
continuous integration or continuous deployment
methods.

3.2.1.6 Maintenance of Software

Software in Safety-Critical systems might have a long
lifetime. A particular version of the Software will not
age in the traditional sense typically ascribed to
mechanical or electrical components. However,
Software may become outdated for a given application
if the Software’s environment changes. Additionally,
changes made to fix defects discovered after
deployment might introduce additional defects.

To address this, Software Engineers must consider how
Software for Safety-Critical systems will be maintained
and evolve over time, and should ensure these
activities related to the maintenance of Software after
deployment are followed:

• A maintenance plan is created that addresses

− how the Software’s health will be monitored
over the course of its lifetime;

− how defects that arise during use of the
Software will be addressed, including
prioritizing defects and appropriate
responses;

− with respect to elements provided by third
parties (such as operating systems or open-
source libraries), how available updates,
in-service bulletins, and obsolescence are
assessed and managed;

− how redeployments or updates of the Software
will be handled, including change verification
and required regression testing (note that
changes to Software support tools, such as
compilers, FPGA generation tools, simulators,
or test data generators, may affect the
Software generation and test environment, so
changes to tools are considered part of
Software change management, including
required regression testing and Safety re-
tests); and

− how to address discovered security
vulnerabilities in a manner that does not
impact the operation of Safety-Critical
components.

• A decommissioning plan should be created that
addresses scenarios where the Software is
removed from use. Decommissioning plans should
include methods for destroying sensitive material
that could impact the security of the system (for
example, key material, sensitive configuration
data).

3.2.2 USE OF THIRD-PARTY SOFTWARE
ARTIFACTS

Not all Software included in a Safety-Critical Software
project is directly developed by the project team. This
section discusses the use of third-party Software
artifacts within Safety-Critical Software projects. The
topic of third-party Software artifacts is relevant to
many of the other topics discussed in Section 3.0
Guidelines for Professional Practice.

For a specific project, Software Engineers should
consider how the guidance in this section can be
integrated with the relevant processes and life cycle
phases described in Section 3.2.1 Phases of Safety-
Critical Software Development above.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 15

Early in a project, Software Engineers should identify
which functions of the Safety-Critical Software (or
supporting infrastructure) will be fulfilled by third-
party Software artifacts. This might include Software
that is part of the final binary (such as libraries),
Software that provides services or an environment
(such as an operating system), or Software that handles
the binary (such as a compiler).

When Software Engineers rely on third-party Software
artifacts as part of a Safety-Critical system, they should
use their judgment to determine whether the Software
is suitable for the application.

3.2.2.1 Types of Third-Party Software

Third-party Software may generally be divided into two
categories:

1. Software of unknown provenance: Software that is
widely available but was not developed with the
intent of being incorporated into Safety-Critical
Software or for which adequate engineering
records do not exist.

2. Off-the-shelf Software: Software that already exists
and was created with the intent of being
incorporated into Safety-Critical Software but for
which the Software Engineer cannot directly claim
professional responsibility. This includes
commercial off-the-shelf Software.

Furthermore, Software of unknown provenance or off-
the-shelf Software might be either proprietary (closed
source) or open source, and might also have been
developed by a vendor or by a community group. Note
that many permutations of these factors are possible.
For example, it is possible to have open-source
Software of unknown provenance that was developed
by a vendor.

In some cases, off-the-shelf Software might include a
certificate demonstrating compliance with a particular
standard. Where appropriate, such certificates may be
used as evidence that a rigorous process was used to
develop the Software. However, not all standards are
sufficiently rigorous for Safety-Critical Software
applications, so Software Engineers should use their

judgment when evaluating the applicability of certified
off-the-shelf Software for use in a specific Safety-
Critical application.

3.2.2.2 Assessing the Suitability of Third-Party

Software for Safety-Critical Software

Projects

When considering third-party Software artifacts for use
within a Safety-Critical Software project, Software
Engineers should ask the following questions:

• Will the third-party Software fulfill its intended
purpose as part of the Safety-Critical Software?

− This could be established by reviewing the
Software’s documentation, reviewing evidence
of prior use in Safety-Critical (or similar)
applications, and conducting systematic
testing.

• What is the potential impact of the third-party
Software artifacts on the integrity of the Safety-
Critical Software?

− For example, if the third-party Software
malfunctioned, would it contribute to the
occurrence of a Hazard. This is particularly
relevant for Software of unknown provenance,
which should only be integrated with Safety-
Critical Software with great care.

• If it is difficult to directly assess the quality of the
third-party Software, what indicators can be
reviewed to determine the suitability of such
Software for use in a particular project?

− The following indicators can be reviewed
when assessing third-party Software:

 Vendor and/or community credibility: For
example, for open-source Software, this
can include looking at the community
organization structure, in particular
whether there is a well-defined process
for contributing to the community.

 Vendor or community compliance with
established quality or Safety standards
(for example, ISO 26262 Road Vehicles –
Functional Safety, for automotive
Software).

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 16

 Maturity of the third-party Software and
history of the Software’s use in other
projects.

 Availability of Software documentation
(for example, requirements or application
programming interface [API]
specifications, test procedures).

 For open-source Software, accessibility of
the Source Code and ability to conduct
static or dynamic analysis and
verification. Such evaluation is typically
not possible for proprietary (closed
source) Software.

 Independent testing of the Software or
library for existence of security defects.

• What long-term support and maintenance of the
third-party Software artifacts is available?

− This is particularly relevant for community-
supported Software, as it might not be
possible to arrange support contracts (or
similar support) with the overall community.

• Have the license terms under which the third-party
Software artifact is provided understood and
appropriate for the intended use?

− Many Software licensing models can affect
how a third-party Software artifact is used in a
specific project. For example, some open-
source licenses prohibit commercial use of the
Software artifacts, while others may require
that project-specific additions to the third-
party Software be contributed back to the
development community.

• What methods will be used to incorporate the
third-party Software artifacts into the
infrastructure (for example, build process, version
control) of the Safety-Critical Software project?

3.3 SAFETY ENGINEERING FOR

SAFETY-CRITICAL SOFTWARE

Safety engineering is a sub-discipline of systems
engineering and may be conducted entirely
independently of Software engineering. However, in the
modern context, Software Engineers may often perform
tasks that would be more typically performed by
systems engineers. This is partly due to the role that
Software plays in controlling the overall behaviour of
complex systems.

Therefore, it is important for Software Engineers to
have a working knowledge of Safety engineering
techniques and to understand how to apply those
techniques or engages specialists to do so when
developing Software for Safety-Critical systems.

This section describes the following Safety engineering
activities and techniques that may be employed by
Software Engineers working on Safety-Critical systems
that incorporate Software:

• Hazard analysis

• Risk and criticality analysis

• Reliability engineering

• Safety cases

3.3.1 HAZARD ANALYSIS

Hazards, as defined in these guidelines, are sets of
conditions or an operational situation that might lead
to an Accident. Hazard analysis in Software
development is an iterative process used to assess Risk
and identify different types of Hazards.

These guidelines make the following recommendations
regarding Hazard analysis:

• A Hazard analysis that employs an appropriate
selection of systematic techniques should be
conducted for Safety-Critical Software.

• Hazards should be identified at an appropriate
level of abstraction (for example, based on system
requirements).

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 17

• Causal Factors that contribute to the occurrence of
a Hazard should be identified.

• The scope of the system being analyzed should be
clearly identified prior to determining Hazards or
Causal Factors.

• If applicable, Hazard analysis should include the
study of human-machine interfaces to identify
related Hazards or Causal Factors.

• Hazards and Causal Factors should be clearly
described and documented. It is recommended
that a standard template be used to document the
Hazard analysis.

• Once Causal Factors are identified, control
measures should be designed to mitigate possible
occurrences of the Hazard due to the Causal
Factors.

Note that Hazard analysis is an iterative process, as
changes made during the definition, development, and
implementation process may effect changes to failure
modes and Hazards that need to be accounted for.

3.3.1.1 Identifying Hazards and Causal Factors

Hazards are typically identified at an abstract or black-
box level of system abstraction (see Section 3.2.1.1
Elicitation of Software Requirements); the level of
abstraction should be sufficient to describe overall
behaviour of the system in question and usually
concerns the interaction of the system with its
environment.

Hazards form the basis of Safety engineering efforts
and should therefore be:

• identified as early as possible in the engineering
process;

• stated clearly and unambiguously; and

• reviewed frequently to ensure they are complete as
designs evolve.

Causal Factors, as defined in these guidelines, are
actions, omissions, events or conditions that contribute
to the occurrence of a Hazard. Importantly, Causal
Factors are often distinct from the Hazards themselves,
and many different Causal Factors may contribute to

the occurrence of a single Hazard. For example, in a
cardiac pacemaker system, a Hazard might be that
“the device delivers an unsafe amount of energy to
the surrounding tissue,” while a Causal Factor for this
particular Hazard might be that “the Software
controller experiences an integer overflow when
calculating the energy value.”

3.3.1.2 Techniques for Hazard Analysis

Several systematic techniques exist for determining
how Causal Factors might contribute to the occurrence
of a Hazard. Common techniques include the following:

• Failure modes and effects analysis (FMEA): A
bottom-up method that focuses on determining if
and how failures (Causal Factors) can result in the
occurrence of a Hazard. See Ericson (2015).

• Fault tree analysis (FTA): A top-down method that
assumes a Hazard has occurred and works
backwards to determine what might have caused
the Hazard to occur. See Ericson (2015).

• Hazard and operability study (HAZOP): A method
for determining Causal Factors using a set of guide
words to identify failure modes, which originated
in chemical and process engineering. See Ericson
(2015).

• System theoretic process and analysis (STPA): A
method that combines control-theoretic modelling
and a set of guide words to identify failure modes
due to inadequate control. See Leveson (2018).

Hazard analysis techniques have both strengths and
weaknesses, and may provide only one specific
perspective of the system. Software Engineers should
select an appropriate combination of techniques to
establish a reasonable degree of confidence that the
resulting understanding of the Hazards is sufficiently
comprehensive. In many scenarios, more than one
analysis technique may be required.

Some techniques, such as FTA, have variations or
extensions where likelihood values are assigned to
each event or failure that might occur. In many
contexts, such as mechanical system design,
probabilities are readily derived based on

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 18

experimentation and known properties of devices and
materials. However, in other contexts, such as Software
development, probabilities might be difficult to
determine. In such cases a qualitative analysis may be
applicable. An appropriate technique should be
selected such that the results are both comprehensive
and meaningful. One example of such a technique is
Markov analysis (Ericson 2015).

Techniques such as FMEA and FTA focus on the
identification of failures that may lead to a Hazard.
These techniques may be used independent of any
Hazard definition (provided what constitutes a failure
is understood). However, not all failures in a system
will lead to the occurrence of a Hazard.

3.3.1.3 Example of Hazard Identification

Following is a short fictitious example of a Hazard, with
a number of Causal Factors and suggested Safety
control measures. This example is intended to illustrate
the differences between Hazards and Causal Factors, as
discussed above.

1. System and assumptions:

• Consider an electronic brake controller (EBC) in an
automobile.

• Assume that all brake commands are received by
the EBC, which, in turn, uses a Software routine to
coordinate the application of the brakes to the
wheels of the vehicle.

• The system under investigation is the EBC itself,
including the system-on-chip (SoC) hardware
running the Software, the real-time operating
system (RTOS), and the brake control Software
application.

• The EBC system receives inputs from either a
vehicle controller (for example, cruise control) or
directly via the brake pedal.

• This simple architecture is depicted in Figure 1.
Blue blocks indicate Software elements, purple
blocks indicate hardware elements, and grey
blocks indicate the components are outside the
scope of the system. Arrows represent data flow.

Figure 1: Block Diagram of an Electronic Brake Controller System

NOTES:
EBC = electronic brake controller; RTOS = real-time operating system; SoC = system-on-chip

SoC hardware

RTOS

EBC application

EBC

Brake
actuator

Vehicle
controller

Brake pedal

<Electrical
signal>

<Electrical
signal>

<System bus>

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 19

2. Hazard identification:

• For the system illustrated in Figure 1, one Hazard
might be stated as follows:

− Hazard 1: The EBC system sends a braking
signal to the brake actuator without
appropriate stimulus from either the brake
pedal or vehicle control components.

3. Causal Factor identification:

• By applying the various techniques described
above (such as FTA), the following Causal Factors
for this Hazard may be identified (these are
examples, not a complete list):

− Causal Factor 1: The SoC experiences a
hardware failure in the RAM unit that corrupts
memory relied upon by the RTOS or the EBC
application.

− Causal Factor 2: The RTOS incorrectly
schedules the signal-emitting process within
the EBC application.

− Causal Factor 3: The EBC application
experiences a deadlock between two critical
processes immediately after sending a braking
signal to the actuator, and subsequently fails
to disable the braking actuator.

4. Control measure design:

• Once the Hazards and Causal Factors are
identified, additional control measures that could
mitigate the Causal Factors should be designed.

• These control measures are often expressed as
requirements. For example, Causal Factor 1 above
might be mitigated by the following:

− Safety Requirement 1: For each critical piece
of data, the EBC algorithm will store a
checksum, then compare the value of the
stored checksum to a checksum computed for
the data retrieved from memory prior to using
the data.

3.3.2 RISK AND CRITICALITY ANALYSIS

Risk is typically defined as a combination of two
factors:

1. The severity of an anticipated Accident resulting
from a Hazard; and

2. The likelihood of a Hazard occurring and leading to
Accident (alternatively referred to as “exposure”).

Given the Hazards for a particular system, it is possible
to determine a level of Risk associated with the
Hazards. The Risk can then be used to establish the
criticality of each Hazard and the corresponding
engineering efforts associated with mitigations for
Hazards.

These guidelines make the following recommendations
regarding Risk and severity assessment:

1. A Risk and/or severity analysis should be
conducted for Safety-Critical systems that
incorporate Software.

2. The Risk and/or severity should be identified and
documented for each Hazard.

3. The method of Risk and/or severity determination
should be appropriate for the system in question
such that results are meaningful.

Many methods for calculating Risk exist. In cases
where likelihood can be determined as a probability
(numerical), and the severity of an Accident can be
quantified (for example, environmental damage, human
lives directly affected), it may be acceptable to conduct
a purely numerical Risk calculation.

However, for some systems (including systems that
incorporate Software), probabilities of Hazards
occurring and/or the associated losses are difficult to
meaningfully quantify. In such cases, an ordinal scale
may be appropriate.

Many original Risk and severity scales exist and are
often included in industry-specific standards. A sample
ordinal Risk and severity table is shown in Figure 2
below, and corresponding definitions of Risk likelihood
and severity categories are listed in Table 1 below.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 20

LI
KE

LI
HO

OD
 4 4A 4B 4C 4D

3 3A 3B 3C 3D

2 2A 2B 2C 2D

1 1A 1B 1C 1D
 A B C D
 SEVERITY

Figure 2: Sample Risk and Criticality Table

Table 1: Definitions of Risk Likelihood and Severity Categories

 LIKELIHOOD SEVERITY

1 Highly unlikely or very low probability A No harm or negligible harm to persons or the environment

2 Unlikely or low probability B Minor injuries to persons, or minor harm to environment

3 Occasional or medium probability C Major injuries, possible death of persons, or major harm to environment

4 Certain or high probability D Certain death to one or more persons, or catastrophic harm to environment

3.3.3 RELIABILITY ENGINEERING

Reliability is a property of a system related to its ability
to carry out its intended function, whereas Safety is a
property of a system that indicates that the system is
free from unacceptable risk of an Accident occurring
due to non-malicious causes.

These properties are not equivalent and may in fact be
in conflict. Systems might be safe but unreliable (for
example, an airplane that never leaves the ground) or
reliable but unsafe. However, reliability and Safety are
often concurrently desirable properties of Safety-
Critical Software, which must maintain a minimum
level of Safety at all times.

There are many techniques and analysis methods
available that focus on improving Software and system
reliability. Reliability engineering techniques and
methods may be applied to Safety-Critical Software
projects, with the aim of reducing the Risk associated
with the occurrence of Hazards.

Reliability engineering is a large field, so the following
techniques should not be considered a comprehensive
list, but may be used as starting points for analyzing
and improving the reliability of Safety-Critical
Software:

• Apply Hazard analysis techniques (such as FTA or
FMEA) with a focus on reliability (rather than
Safety), to identify failures that could compromise
reliability.

• Add redundant elements, such as arbitrated
redundant computation or N-version design and
programming, to improve reliability.

• Use robust error detection and handling
mechanisms; for example, exception-handling
structures in programming languages, to improve
reliability.

• Use periodic backups or state checkpoints, which
would may improve reliability by allowing the
system to return to a known state if a failure
occurs.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 21

• Apply certain system and Software design patterns
to improve reliability; for example, isolating high-
reliability critical functions into a single high-
integrity component.

3.3.4 SAFETY CASES

A Safety case (also referred to as an assurance case)
is an evidence-based argument for the Safety of a
system. All Safety-Critical systems have an inherent
level of Risk associated with their application; for
example, the Risk inherent in the achievement of
system objectives. The aim of a Safety case is to argue
that inherent Risk has been reduced and any Residual
Risk is acceptable for the intended application.

In addition to their primary purpose (of arguing for
Safety), Safety cases are also useful for supporting
certification and regulatory efforts. First, they organize
all of the Safety-related information into one location
for certification authorities, which reduces effort
associated with system review. Second, they provide
certification authorities with concise descriptions of
why the Software Engineers building the systems
believe them to be acceptably safe.

A Safety case is composed of two fundamental elements:

1. An argument regarding the acceptability of
Residual Risk in a system

2. Evidence to support claims or assertions made
by the argument

Fundamentally, without appropriate evidence to
substantiate claims, no argument about Safety can
be made. Many records may be considered evidence;
for example, verification records and reports, design
documents, mathematical analyses, or design
inspection and review reports authored by qualified
individuals.

Safety cases are inevitably subject to bias, so Software
Engineers creating Safety cases should carefully
examine their argument(s) to identify the underlying
assumptions and avoid bias. One approach to reducing
bias is to attempt to prove the system is in fact not
safe, and then determine if the associated Risk is
acceptable.

These guidelines make the following recommendations
regarding Safety cases for Safety-Critical systems
incorporating Software:

• A Safety case should be created and documented
for each Safety-Critical system.

• To reduce bias, Safety cases may make statements
about the acceptability of Residual Risk rather
than attempting to prove Safety.

• Evidence used to support claims in a Safety case
should be well documented and of reliable
provenance.

• Notations for structuring arguments, such as goal-
structuring notation (GSN), are not required, but
may be used to visualize Safety arguments and
provide supporting evidence.

Further guidance regarding Safety (or assurance) case
development is in ISO/IEC/IEEE 15026:2019 – Systems
and Software Engineering – Systems and Software
Assurance (ISO 2019).

Figure 3: Sample Safety Case Argument Using Goal-
Structuring Notation below shows an example of a
GSN-based Safety case that builds on the previous
example of a Hazard identification for an EBC in
Section 3.3.1.3 above. In Figure 3, the Safety of the
control Software for the EBC is demonstrated by
arguing that all identified Hazards are mitigated by the
requirements, design, and implementation. Evidence is
used to support claims (expressed in GSN as goals) that
the requirements are correct, complete, and
satisfactorily implemented by the Software. Only one
Hazard (called “inaccurate braking force applied”) is
shown.

This example demonstrates a GSN argument syntax. It
should not be considered a complete Safety case for an
EBC system; in actual practice, a Safety case for an EBC
Software system would be much more complex.

Other GSN-based examples, and guidance on syntax,
semantics, and style for GSN Safety cases is available
in the GSN Community Standard – Version 2 (SCSC
2018).

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 22

Figure 3: Sample Safety Case Argument Using Goal-Structuring Notation

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 23

3.4 SECURITY ACTIVITIES FOR

SAFETY-CRITICAL SOFTWARE

Security engineering is a specialty engineering field
that is focused on the design and implementation
aspects of digital systems that addresses the potential
for inadvertent misuse or malicious behaviour.

Therefore, it is important for Software Engineers to
have a working understanding of security engineering
techniques and to understand how to apply those
techniques or engage specialists to do so when
developing Software for Safety-Critical systems.

This section describes the following security
engineering activities and practices that may be
employed by Software Engineers and specialists
working on Safety-Critical systems:

• Security Risk and Threat analysis

• Security controls and policies

• Security verification and validation

• Security assurance cases

• Assessment of third-party libraries

Traditionally, security-critical1 and Safety-Critical
terminologies are defined separately and vary across
different industries. However, with the evolution of
Internet- and network-connected critical Software,
these terminologies and subject matter are often
used interchangeably. However, existing standards
provide limited guidance for when Safety-Critical
Software and security-critical Software are combined.
In the context of this document, the security of the
Software is considered critical to the extent required to
mitigate security-related Risk in support of the system
Safety case(s).

Several security standards are available for reference
(see Section 3.6 Relevant External Standards and
Guidelines). Note that these standards are usually
oriented towards enterprise systems rather than

1 Literature definitions of “security-critical software” often refer to data
associated with the Software being sensitive to loss or theft for reasons
of privacy, property, and economic loss. While this may be a concurrent

industrial systems (for example, manufacturing,
process control, transportation).

When undertaking work with Safety-Critical Software,
Software Engineers should consider guidance from
relevant security standards, so they can make informed
decisions about the application of appropriate security
engineering techniques. Security standards provide
foundational guidance for building Safety-Critical
Software, but the guidance should be applied with care
to avoid affecting the reliability of the Software.

Software Engineers should also employ security
engineering practices to reduce the likelihood that
malicious agents could contribute to the occurrence of
a Safety Hazard. This section describes a collection of
these practices.

The following list of activities and practices is not
comprehensive, but represents the minimum standard
of practice that Software Engineers should follow when
developing Safety-Critical Software.

3.4.1 SECURITY RISK AND THREAT ANALYSIS

In security engineering literature, the term “threat” is
used rather than “Hazard.” However, in these
guidelines, these terms are considered the same and
are used interchangeably. When assessing the security
of Safety-Critical Software, Software Engineers should
consider how security vulnerabilities or a malicious
agent might contribute to the occurrence of a Hazard.

A security Risk analysis provides Engineering
Professionals with an understanding of the Risk
associated with Threats. For Safety-Critical Software, a
security Risk analysis should be conducted that mirrors
the Safety Risk analysis described in Section 3.3 Safety
Engineering for Safety-Critical Software.

Briefly, a security Risk analysis should determine the
likelihood that a Threat will occur, and ascertain the
severity of that Threat. In this context, the goal of a
security Risk analysis would be to understand any

concern for some Safety-Critical Software, such concerns are not a focus of this
document.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 24

additional Safety Risk associated with the security
vulnerabilities and the potential impact of malicious
agents. The resulting level of Risk should be used to
motivate additional security measures.

Once the level of security Risk has been established, a
Threat analysis may be used to identify vulnerabilities.
Many techniques for analyzing Threats exist, and are
similar to the techniques discussed in Section 3.3.1
Hazard Analysis. The primary difference in a security
context is the existence of a malicious agent.

Common techniques for conducting Threat analyses
include the following:

• Threat modelling: A systematic approach to
identifying and enumerating Threats to a system.
Threats can then be addressed and mitigated by
adding security requirements. See Shostack (2014)
for additional details.

• Attack tree analysis (ATA): A systematic top-down
method of identifying vulnerabilities and malicious
actions that constitute Threats. This approach is
similar to the fault tree analysis (FTA) discussed in
Section 3.3.1.2 Techniques for Hazard Analysis.

• System theoretic process and analysis for security
(STPA-Sec): A security adaptation of a Safety-
focused STPA Hazard analysis method. See Young
(2014) for additional details.

During a Threat analysis, the following aspects of
information security should be considered:

• Confidentiality: Information regarding the system’s
design and operation is controlled and distributed
on a need-to-know basis.

• Integrity: The data used by the Software to
complete Safety-Critical functions is accurate and
trustworthy.

• Availability: The system is capable of completing
its specified Safety-Critical functions.

The output of a Threat analysis should be a set of
system vulnerabilities that are not already mitigated by
the system design.

3.4.2 SECURITY CONTROLS AND POLICIES

Once vulnerabilities have been identified, Software
Engineers should design security controls and policies
to prevent malicious agents from exploiting the
vulnerabilities. In cases where prevention is not
possible, a combination of controls and policies aimed
at detection and recovery should be employed.

Controls and policies might include the following:

• Designs that limit access to critical system controls
(such as network isolation)

• Data backup procedures (such as nightly backup to
offsite locations)

• Data integrity measures (such as checksums)

• Data protection measures (such as encryption)

• Software measures (such as validation of user
inputs)

• Network security measures (such as firewalls)

• Access control and authentication mechanisms
(such as passwords or 2FA)

• System monitoring mechanisms (such as SIEM or
automated monitoring systems)

• Physical access controls (such as locked doors or
air-gapped systems)

• Operational policies (such as user access
management policies or documented system
recovery policies)

• Human resources policies (such as termination
procedures with respect to access to information)

• Security training policies (such as policies
surrounding the frequency and content of training)

• Secure Software development life cycle policies
(such as secure development practices or
reduction of security defects in finished code)

• Patching policies (such as how systems and
Software will be updated to remediate security
defects)

• Vulnerability management policies (such as how
Software security defects will be identified and
addressed)

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 25

The designed security controls should be expressed
as requirements, to ensure they are fully incorporated
into the Software engineering process as discussed in
Section 3.2 Software Engineering Processes and Life
Cycle.

3.4.2.1 Control of Remotely Accessible Systems

Software Engineers should consider the security
implications of functions that permit remote access
or control. Systems permitting remote access have an
increased attack surface that may expose a large
number of vulnerabilities to a malicious agent. In
highly critical systems, the Risk associated with
remote access functionality might be intolerable.

In some cases, it might be possible to isolate the
highly critical functions and/or components and
provide additional security controls. For example, a
remote access system for a chemical processing
facility might include network isolation via a virtual
private network (VPN), where network control policies
dictate that users have “read-only” rights when
accessing the network remotely, and must be physically
on-site for “write” operations to be allowed on the
processing Software and/or hardware.

Alternatively, the security of communications can be
increased by tightly controlling access to systems by
applying restrictions on communication origins and
timing, authentication methods, permissible
commands, and automated behavioural analysis.

3.4.3 SECURITY VERIFICATION AND VALIDATION

Software Engineers should engage in validation
activities to establish the adequacy of the implemented
controls and policies. This might include actions to:

• conduct audits for compliance to existing
security standards and guidelines;

• perform independent adversarial system testing;
• use testing tools to identify common security

defects;

• confirm the traceability of requirements,
controls, and policies through the design and
implementation of the Safety-Critical Software;
and

• verify Software security requirements.

3.4.4 SECURITY ASSURANCE CASES

Security assurance cases present an evidence-based
argument for the security of a system. Security
assurance cases may be viewed as an extension of
Safety cases; accordingly, the guidance in Section 3.3.4
Safety Cases also applies in the context of security
assurance cases.

Where applicable, Software Engineers should create a
security assurance case for Safety-Critical Software.
Usually, the Safety case and the security assurance
case can be combined to form one argument.

3.4.5 ASSESSMENT OF THIRD-PARTY LIBRARIES

Third-party libraries should be assessed to determine if
they contain security vulnerabilities, before being
chosen for inclusion in a system.

Software Engineers should assess third-party libraries
for the following:

• Source (for example, location from which the
library was downloaded)

• Existence of prior independent testing or
assessment of security controls

• Conformance to secure Software engineering
standards

• Additional referenced or included libraries (for
example, libraries that are referenced or included
within the library being assessed)

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 26

3.5 OBSERVATION OF DEFICIENCIES

When providing Software engineering services,
Engineering Professionals may become aware of a
significant deficiency in other aspects of the Software
or the larger project that involves the practice of
professional engineering.

In such instances, the Engineering Professional must
act in a way that is consistent with the intent of the
Association’s Code of Ethics, Bylaw 14(a). Principle 9
of the Code of Ethics requires Engineering
Professionals to “report to their Association or other
appropriate agencies any hazardous, illegal, or
unethical professional decisions or practices by
members, licensees, or others”.

Accordingly, an Engineering Professional who observes
a significant deficiency in any aspect of the project
should report it to the client or to the client’s
representative, and if the client or their representative
does not respond appropriately, the observing
Engineering Professional must inform the appropriate
regulatory authorities of the significant deficiency.

In addition to the reporting obligation discussed above,
if the client does not choose to proceed with
appropriate actions to mitigate the significant
deficiency, then it is recommended that the
Engineering Professional express their concerns in
writing, and note that he or she cannot take
responsibility for their aspects of the project. It is
recommended that in such a communication, the
Engineering Professional notes that all Engineering
Professionals are obligated to design in accordance
with good engineering practice, including the practices
outlined in these guidelines.

3.6 RELEVANT EXTERNAL STANDARDS

AND GUIDELINES

Table 2: List of Relevant External Standards and
Guidelines in this section contains references to
relevant standards that might apply to Software
Engineers involved in the development of Safety-
Critical Software.

Importantly, Software Engineers must identify the
standards and guidelines that apply to the projects
that they support. Applicability may be established
by consulting one or more of the following sources:

• Any federal, provincial, local, or other legally
applicable legislation, regulations, or rules

• Contracts or other applicable documents agreed
to with clients

• Standard industry practice

Industry standards evolve over time, so the following
collection of top resources is not meant to be
comprehensive nor is it a checklist for compliance with
these guidelines. Rather, it represents a selection of
common standards that reflect current practices in
specific industries.

See also Section 6.0 References and Related
Documents.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 27

Table 2: List of Relevant External Standards and Guidelines

TITLE DESCRIPTION REFERENCEa

BEST PRACTICES

Center for Internet Security (CIS)
Critical Security Controls for
Effective Cyber Defense

• Contains practices aimed at improving security for critical
computer systems.

• Contains actionable guidance that Engineering Professionals
and organizations may consult to improve security of
connected systems.

CIS 2019a

CIS Benchmarks: Secure System
Configurations

• Secure benchmark system configurations for common
commercial off-the-shelf Software and operating systems.

• These benchmarks can be followed to ensure that critical
computer systems are deployed in a secure manner.

CIS 2019b

Open Web Application Security
Project (OWASP) Secure Software
Development Life Cycle

• A standard approach that can be applied to the Software
development life cycle (SDLC) of both online and offline
applications, to reduce the occurrence of security defects that
reach production codebases.

• The secure SDLC covers all stages of the Software development
process.

OWASP Foundation
2019

FRAMEWORKS

Building Security In Maturity
Model (BSIMM)

• Based on real-world practices of companies that include
security in their Software development practices.

• Comprises 4 domains that include 12 practices and a total of
119 security-related activities that are designed to increase the
maturity of secure Software development practices at an
organization.

Synopsis 2020

National Institute for Standards
and Technology (NIST)
Cybersecurity Framework

• Consists of standards and guidelines that focus on improving
the security profile of critical infrastructure.

• Developed in the United States of America and may require
adaptation to a Canadian context.

• However, it is widely recognized internationally as a high-
quality framework for managing cybersecurity Risk.

NIST 2019

REGULATIONS

WorkSafeBC Occupational Health
and Safety Regulation (OHSR),
Sections 19.36 – 19.40 Control
Systems

• Deal with the design of control systems and require that
qualified persons design the control system.

• Although the design of control systems is not solely within the
scope of Software engineering, if the control system being
designed is for a Safety-Critical system, and if there is
Software in that system that controls Safety-Critical functions,
work related to creating that control-system Software must be
done by a Software Engineer.

WorkSafeBC 2019

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 28

TITLE DESCRIPTION REFERENCEa

STANDARDS

DO-178C Software Considerations
in Airborne Systems and
Equipment Certification

• Provides recommendations regarding the Software engineering
for Software used in aircraft.

• Also has a number of appendices that cover specific topics
such as Tool Qualification (DO-330), Model Based Software
Engineering (DO-331), Object-Oriented Programming (DO-332),
and Formal Methods (DO-333).

RTCA 2011a

DO-278A Software Integrity
Assurance Considerations for
Communication, Navigation,
Surveillance and Air Traffic
Management (CNS/ATM) Systems

• This related companion to DO-178C is focused on Software
engineering for ground-based systems used in the aviation
industry (for example, air traffic control).

RTCA 2011b

IEC 61508 Functional Safety of
Electrical/Electronic/Programmab
le Electronic Safety-related
Systems

• Recommends generic systems, hardware, and Software
engineering activities and is not tailored for a specific domain.

• Widely adopted in industry. Many of the activities
recommended in these guidelines are consistent with
recommendations in IEC 61508.

IEC 2010

ISO 26262 Road Vehicles –
Functional Safety

• A refinement of IEC 61508 for the automotive industry, and
provides recommendations regarding system, hardware, and
Software engineering processes for automotive systems.

ISO 2018

ISO 62304 Medical Device
Software – Software Life Cycle
Processes

• Provides guidance on Software engineering activities for the
development of medical devices.

ISO 2006

ISO/IEC 27001 Information
Technology – Security Techniques
– Information Security
Management Systems —
Requirements

• Provides high-level guidance for the management of
information security.

• Covers a broad range of information security topics;
accordingly, only some clauses are specific to Safety-Critical
Software.

ISO/IEC 2013

ISO/IEC/IEEE 29148 Systems and
Software Engineering – Life Cycle
Processes – Requirements
Engineering

• Specifies the required processes implemented in the
engineering activities that result in requirements for systems
and Software products (including services) throughout the life
cycle.

ISO/IEC/IEEE 2018

UL 1998 Standard for Software In
Programmable Components

• Provides requirements related to non-networked embedded
Software residing in programmable components performing
Safety-related functions, whose failure is capable of resulting
in a Risk of fire, electric shock, or injury to persons.

UL 2013

NOTE
a Full references are listed in Section 6.0 References and Related Documents.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 29

4.0 QUALITY MANAGEMENT IN

PROFESSIONAL PRACTICE

4.1 QUALITY MANAGEMENT

REQUIREMENTS

Engineering Professionals must adhere to the
applicable quality management requirements during
all phases of the work, in accordance with the
Association’s Bylaws. It is also important to be aware
of whether additional quality management
requirements exist from authorities having jurisdiction
or through service contracts.

To meet the intent of the quality management
requirements, Engineering Professionals must establish
and maintain documented quality management
processes for the following activities:

• The application of relevant professional practice
guidelines

• Authentication of professional documents by the
application of the professional seal

• Direct supervision of delegated professional
engineering activities

• Retention of complete project documentation

• Regular, documented checks using a written
quality control process

• Documented field reviews of Engineering
designs/recommendations during implementation
or construction

4.1.1 PROFESSIONAL PRACTICE GUIDELINES

Engineering Professionals are required to comply
with the intent of any applicable professional practice
guidelines related to the engineering work they
undertake. One of the three objectives of the
Association, as stated in the Act is “to establish,
maintain, and enforce standards for the qualifications
and practice of its members and licensees”. Practice
guidelines are one means by which the Association
fulfills this obligation.

These professional practice guidelines establish the
standard of practice for the development of Safety-
Critical Software. Software Engineers and other
Engineering Professionals who carry out these
activities are required to meet the intent of these
guidelines.

4.1.2 USE OF SEAL

In accordance with the Act, s.20(9), Engineering
Professionals are required to seal all professional
engineering documents they prepare or deliver in their
professional capacity to others who will rely on the
information contained in the documents. This applies
to documents that Engineering Professionals have
personally prepared and those that others have
prepared under their direct supervision.

Failure to seal these engineering or geoscience
documents is a breach of the Act.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 30

4.1.2.1 Sealing Software Engineering Documents

The Association’s Quality Management Guidelines –
Use of Seal outline sealing requirements for general
engineering practices (Engineers and Geoscientists BC
2017). Therefore, this section aims to provide an
interpretation of those guidelines that is specific to
Software engineering and aligns with the Association’s
standard of practice for the use of seal in Safety-Critical
Software engineering projects. Note that the
recommendations in those generic guidelines still apply
to a Software Engineer’s general engineering practice;
however, Software Engineers must be familiar with
both the following discipline-specific interpretation and
the generic guidelines, and must use their professional
judgment when determining sealing procedures for a
specific project or context.

Where a Software Engineer performs Safety-Critical
Software engineering work in British Columbia, the
Software Engineer is required to seal all relevant
engineering documents and artifacts according to the
Quality Management Guidelines – Use of Seal
(Engineers and Geoscientists BC 2017).

If a client refuses to accept the sealing of certain
project deliverables, the Software Engineer is not
required to seal the deliverables submitted to the client
but must keep a record of the client’s refusal. In all
cases, the Software Engineer must keep a sealed
version of relevant engineering documents and artifacts
for his or her own records.

4.1.2.2 Sealing Software Engineering Work Within an

Organization

Software Engineers often work within organizations as
employees, and have varying roles that combine
technical expertise with management responsibilities.

In such cases, the Software Engineer should advocate
within their organization for a professional engineering
practice policy. This policy should outline the roles and
responsibilities of a Software Engineer with respect to
sealing Safety-Critical Software engineering
documents.

It may be necessary for each project to have its own
project-specific clarifications in project-specific plans.
These documents should impose procedures for sealing
deliverables that are consistent with the guidance in
Quality Management Guidelines – Use of Seal
(Engineers and Geoscientists BC 2017) and with the
obligation at section 20(9) of the Act that professional
engineers seal all professional engineering documents
that they prepare or deliver in their professional
capacity. If a professional engineering practice policy
has not been finalized, Software Engineers must use
their professional judgment to assess whether a
particular deliverable must be sealed, and are
responsible for storing sealed versions of relevant
deliverables that they have created. (See also Section
4.1.4 Retention of Project Documentation).

4.1.2.3 Sealing Source Code Artifacts

Software Engineers might produce Source Code (or
similar) artifacts as part of their engineering work. This
is often referred to as a “build,” meaning a compilation
of Source Code into binary files suitable for integration
into a target application environment or larger
Software project. However, in some circumstances,
Software Engineers may be delivering plaintext Source
Code files for compilation, integration, and testing by
other parties.

In cases where it is reasonable to apply a physical or
digital seal directly to the Source Code (for example,
when the number of lines of code is small), the
Software Engineer should do so and store the resulting
sealed document accordingly.

However, in most cases it is not reasonable to apply a
physical or digital seal directly to the Source Code if
the volume of code is large or widely distributed, or if
there are further dependencies on third-party items
such as shared libraries or compiler versions. In such
cases, it is usual practice for the Software Engineer to
produce and seal a declaration document that precisely
indicates the items for which the Software Engineer is
providing assurance.

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 31

A declaration document should include the following
information, at a minimum:

• Clear identification of and reference to the archival
location of the provided artifact.

• For compiled artifacts, a version reference to the
systematic version control system for the Source
Code that constitutes the artifact.

• Binary identification information that uniquely
identifies binary and/or source files (for example,
an MD5 checksum for each file).

• A qualification statement regarding the intended
use of the provided artifact. Examples of such
statements include the following:

− For unit test

− For integration with larger project

− For deployment to production environment

− For testing prior to deployment

• A declaration statement similar to the following:

− “The seal and signature of the Engineering
Professional on this document provides
assurance that the essential phases of
Software development outlined in the
Professional Practice Guidelines –
Development of Safety-Critical Software have
been followed in the development of the
Software.”

Additionally, the declaration document may refer to or
describe the following, as appropriate to the nature and
intended use of the article being delivered:

• For compiled items, details related to the build
environment such as the following:

− Compiler identification, including compiler
version

− Build target environment

− Third-party libraries required, and their
version numbers

− Any other required files, such as makefiles or
binary reference tables

• References to applicable test results

• Lists of resolved and/or known issues

• References to applicable user, operation, or
maintenance manuals

4.1.2.4 Sealing Evolving Software Engineering

Artifacts

It is common practice in Software engineering to
produce many revisions of Software engineering
artifacts (such as Source Code). These artifacts might
be released to other departments in an organization
(such as the testing department) or even to the client in
draft form.

Provided the revision is clearly marked as a “draft” (or
a similar term), it is not mandatory to seal these
artifacts. Once a “final” or “release” version of the
artifact has been identified, the Software Engineer
should seal the artifact according to the guidance
above.

4.1.2.5 Employing Digital Sealing Technology

Software Engineers may seal electronic documents
using an electronic version of their seal in conjunction
with digital certificate technology, from a provider such
as Notarius, Inc.

For more information, refer to Quality Management
Guidelines − Use of Seal (Engineers and Geoscientists
BC 2017).

4.1.3 DIRECT SUPERVISION

In accordance with the Act, s.1(1) and 20(9),
Engineering Professionals are required to directly
supervise any engineering work they delegate. When
working under the direct supervision of an Engineering
Professional, unlicensed persons or non-members may
assist in performing engineering work, but they may not
assume responsibility for it. Engineering Professionals
who are limited licensees may only directly supervise
work within the scope of their license.

With regard to direct supervision, the Engineering
Professional having overall responsibility should
consider:

• the complexity of the project and the nature of the
Risks;

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 32

• which aspects of the work should be delegated;

• the training and experience of individuals to whom
work is delegated; and

• the amount of instruction, supervision, and review
required.

These guidelines recognize that Software engineering
projects are complex and often involve large artifacts
(such as Source Code repositories with millions of lines
of Source Code) developed by large teams of
individuals spread across many jurisdictions,
particularly with respect to use of open-source items or
shared libraries. As such, it is not always reasonable for
one Software Engineer to take responsibility for all
aspects of a project.

Accordingly, Software Engineers may create a
declaration document that includes statements
indicating the scope of their work (and those they
directly supervise) for which they are taking
responsibility. The Software Engineer should seal the
declaration in accordance with the recommendations
discussed above in Section 4.1.2 Use of Seal.

A version of the following statement may be used:

“The seal and signature of the undersigned on this
document provides assurance that established
quality management processes, policies, and
Software development activities have been
followed by the undersigned and those directly
supervised by the undersigned. The undersigned
does not warrant or guarantee with respect to
latent defects in third-party components of the
described design or deliverable not discovered
during the development process, but does, by
sealing and signing, provide assurance that the
Software product substantially complies in all
material respects with the intent of the
Professional Practice Guidelines – Development
of Safety-Critical Software.”

The following actions or practices may indicate that a
supervising Engineering Professional has not
adequately directly supervised his or her subordinates:

• Being regularly and for significant periods of time
absent from the principal office premises from
which professional services are rendered

• Being regularly and for significant periods of time
out of communication with subordinates under the
supervising Engineering Professional’s supervision

• Failing to personally inspect or review the work of
subordinates where necessary and appropriate

• Conducting a limited, cursory, or perfunctory
review of plans or projects in lieu of appropriate
detailed review

• Failing to be personally available on a reasonable
basis or with adequate advance notice for
consultation with subordinates where
circumstances require personal availability

For more information, refer to Quality Management
Guidelines − Direct Supervision (Engineers and
Geoscientists BC 2018a).

4.1.4 RETENTION OF PROJECT DOCUMENTATION

In accordance with Bylaw 14(b)(1), Engineering
Professionals are required to establish and maintain
documented quality management processes that
include retaining complete project documentation for a
minimum of ten (10) years after the completion of a
project or ten (10) years after engineering
documentation is no longer in use.

These obligations apply to Engineering Professionals in
all sectors. Project documentation in this context
includes documentation related to any ongoing
engineering work, which may not have a discrete start
and end, and may occur in any sector.

Many Engineering Professionals are employed by
organizations, which ultimately own the project
documentation. Engineering Professionals are
considered compliant with this quality management
requirement when a complete set of project
documentation is retained by the organizations that

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 33

employ them using means and methods that are
consistent with the Association’s Bylaws and
guidelines.

For more information, refer to Quality Management
Guidelines − Retention of Project Documentation
(Engineers and Geoscientists BC 2018b).

4.1.5 DOCUMENTED CHECKS OF ENGINEERING
AND GEOSCIENCE WORK

In accordance with Bylaw 14(b)(2), Engineering
Professionals are required to perform a documented
quality checking process of engineering work,
appropriate to the Risk associated with that work.

Regardless of sector, Engineering Professionals must
meet this quality management requirement. In this
context, ‘checking’ means all professional deliverables
must undergo a documented quality checking process
before being finalized and delivered. This process
would normally involve an internal check by another
Engineering Professional within the same organization.
Where an appropriate internal checker is not available,
an external checker (i.e., one outside the organization)
must be engaged. Where an internal or external check
has been carried out, this must be documented.

Engineering Professionals are responsible for ensuring
that the checks being performed are appropriate to the
level of Risk. Considerations for the level of checking
should include the type of document and the
complexity of the subject matter and underlying
conditions; quality and reliability of background
information, field data, and elements at Risk; and the
Engineering Professional’s training and experience.

The same principles apply to the checking of Source
Code, input files, and other artifacts of the Software
development process.

For more information, refer to Quality Management
Guidelines – Documented Checks of Engineering and
Geoscience Work (Engineers and Geoscientists BC
2018c).

4.1.6 DOCUMENTED FIELD REVIEWS DURING
IMPLEMENTATION OR CONSTRUCTION

In accordance with Bylaw 14(b)(3), field reviews are
reviews conducted at the site of the construction or
implementation of the engineering work. They are
carried out by an Engineering Professional or a
subordinate acting under the Engineering
Professional’s direct supervision (see Section 4.1.3
Direct Supervision).

Field reviews enable the Engineering Professional to
ascertain whether the construction or implementation
of the work substantially complies in all material
respects with the engineering concepts or intent
reflected in the engineering documents prepared for
the work.

In the context of these guidelines, the requirement for
field review can be interpreted to apply to both
verification of Software and its ongoing maintenance.
Refer to the following sections for descriptions of such
activities:

• Section 3.2.1.5 Verification of Software

• Section 3.2.1.6 Maintenance of Software

• Section 3.4.3 Security Verification and Validation

For more information, refer to Quality Management
Guidelines – Documented Field Reviews during
Implementation or Construction (Engineers and
Geoscientists BC 2018d).

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 34

5.0 PROFESSIONAL REGISTRATION &

EDUCATION, TRAINING,

AND EXPERIENCE

5.1 PROFESSIONAL REGISTRATION

It is the responsibility of Engineering Professionals to
determine whether they are qualified by training
and/or experience to undertake and accept
responsibility for carrying out Safety-Critical Software
development (Code of Ethics Principle 2).

As described in these guidelines, the creation of Safety-
critical Software requires the systematic application of
engineering principles, and its operation has the
potential to cause personal harm, injury, illness, death,
or damage to the environment. Safety-critical Software
development constitutes the practice of professional
engineering under the Act.

In the broader Software development community, the
specification, design, implementation, verification,
deployment, or maintenance of Software is not limited
to Engineering Professionals. Many types of Software
exist that do not require a systematic, disciplined,
quantifiable approach to their development, or have
minimal Risk associated with their application, and as a
result do not require the oversight of an Engineering
Professional.

Such work may be conducted by individuals other than
Software Engineers. These guidelines are not intended
to apply directly to projects that are not Safety-Critical
Software projects.

5.2 EDUCATION, TRAINING, AND

EXPERIENCE

The creation of Safety-Critical Software requires certain
levels of education, training, and experience in many
overlapping areas of engineering. The Engineering
Professional who takes responsibility for Safety-Critical
Software must adhere to the Association’s Code of
Ethics (to undertake and accept responsibility for
professional assignments only when qualified by
training or experience) and, therefore, must evaluate
his or her qualifications and must possess the
appropriate education, training, and experience to
provide the services. The level of education, training,
and experience required of the Engineering
Professional should be adequate for the complexity of
the project.

Engineering Professionals, as registered professionals,
have met minimum education, experience, and
character requirements for admission to the profession.
However, the educational and experience requirements
for professional registration do not necessarily
constitute an appropriate combination of education
and experience for the creation of Safety-Critical
Software.

This section describes a set of indicators that
Engineering Professionals can use to determine
whether they have an appropriate combination of
education and experience. Note that these indicators
are not an exhaustive list of education and experience
types that are relevant to Safety-Critical Software

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 35

engineering. Satisfying one or more of these indicators
does not automatically imply competence in Safety-
Critical Software engineering.

5.2.1 EDUCATIONAL INDICATORS

Certain indicators show that an Engineering
Professional has received education that might qualify
him or her to participate professionally in the creation
of Safety-Critical Software. Educational indicators are
subdivided into formal education (such as university or
engineering school) and informal education (such as
continuing professional development).

Formal educational indicators include that the
Engineering Professional has obtained or completed
one or more of the following:

• An undergraduate-level degree in Software
engineering or a related engineering field from an
accredited engineering program

• An undergraduate-level or graduate-level degree in
computer science or mathematics from a college,
university, or engineering school where the degree
contains a combination of theoretical and practical
educational experiences

• A non-degree training program offered by a
university, college, or other educational institution
that focuses on Software engineering topics

Informal educational indicators include that the
Engineering Profession has participated in or
undertaken one or more of the following:

• Training courses facilitated by the Engineering
Professional’s employer that focus on Software
engineering topics

• Continuing professional development courses or
sessions offered by professional organizations
(such as Engineers and Geoscientists BC) that
focus on Software engineering topics

• Conferences or industry events which focus on
Software engineering topics

• A rigorous self-study program involving a
structured approach that contains materials from
text books and technical papers on Software
engineering topics

5.2.2 EXPERIENCE INDICATORS

Certain indicators show that an Engineering
Professional has an appropriate combination of
experience that might qualify him or her to participate
professionally in the creation of Safety-Critical
Software.

Experience indicators include that the Engineering
Professional has completed one or more of the
following:

• For an extended duration (greater than one year)
and/or as an Engineering-in-Training (EIT),
participated in the creation of Safety-Critical
Software under the direct supervision of a
professional engineer with an appropriate
combination of education and experience

• By participating in past projects working alongside
Software Engineers, developed a sufficient
knowledge of Software engineering principles

• Participated in academic or industry working
groups that focus on Software engineering topics

• Obtained substantial experience creating
production-grade Software that, although it is not
Safety-Critical Software, shares properties of
Safety-Critical Software in its application and
development process (such as Software deployed
in high-reliability telecommunications networks)

5.2.3 EXAMPLES OF EDUCATION AND
EXPERIENCE

Following are fictional descriptions of individuals who,
through a combination education and experience may
or may not be qualified to contribute professionally to
the creation of Safety-Critical Software.

5.2.3.1 Formally Trained and Mentored

Susan is a Software Engineer who obtained a Bachelor
of Engineering with a specialization in Software
engineering five years ago. Since graduating, Susan has
worked as a Software developer on a mix of Safety-
Critical and non–Safety-Critical projects at an
automotive company under the supervision of several
experienced Software Engineers. This time also

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 36

counted towards her Engineer-in-Training (EIT)
experience. Within the last year, Susan has registered
as an Engineering Professional and continues to
undertake continuing professional development
focused on Software engineering topics.

Based on her education and industrial experience,
Susan is likely qualified to undertake Safety-Critical
Software engineering work.

5.2.3.2 Experience in Adjacent Discipline

Kaleb is a licensed engineer who practices electrical
engineering and specializes in the design of electronics.
Due to the nature of his work, Kaleb has worked closely
with Software Engineers and has begun to participate
in Software engineering tasks, especially at the
interface between the Software and the hardware he is
working on. Additionally, Kaleb has attended several
continuing professional development seminars on
techniques for Software development and management.

Based on a combination of formal and informal
education and extensive work experience, Kaleb is
likely qualified to undertake Safety-Critical Software
engineering work. However, Kaleb should be aware of
his limitations, particularly when the scope of his work
extends too far beyond the hardware-Software
interfaces that he is experienced with.

5.2.3.3 Non–Safety-Critical Software Development

Experience

Heather obtained a Bachelor of Computer Science six
years ago and has since taken several jobs at a large
Software company that makes a number of Internet
Software applications. While Heather is a very skilled
Software developer, none of Heather’s experience has
been in development of Safety-Critical Software or
Software of a similar level of criticality.

At present, Heather is not qualified to (independently)
undertake Safety-Critical Software engineering work.

Heather could work towards becoming qualified by:
1) successfully registering as an Engineering

Professional; and 2) working under the direct
supervision of a Software Engineer on one or more
Safety-Critical Software projects for an extended period
of time.

5.2.3.4 Experience in an Unrelated Discipline

Wilson has been an Engineering Professional for the
last 20 years and specializes in the configuration and
installation of heating, ventilation, and air conditioning
(HVAC) systems. Wilson has been assigned as a subject
matter expert to a new project that incorporates Safety-
Critical Software. He has written Source Code for a
number of control algorithms. The last time Wilson
wrote Source Code was during a college programming
course.

Wilson is not likely qualified to contribute in this
manner to his company’s Safety-Critical Software
without direct supervision from a Software Engineer.
Possible choices for Wilson include the following:

• Wilson could limit his involvement in the project to
his original subject matter expert role, where he
designs the control system(s) and provides the
designs to a qualified Software Engineer for further
Software design and implementation. In this case,
Wilson should participate in the Software
engineering process (for example, through review,
meetings) to ensure that the intent of his design(s)
are fully implemented and verified appropriately.

• Wilson (or his company) could engage a qualified
Software Engineer to directly supervise the
Software engineering work related to Wilson’s
control system design. In this case, Wilson may
continue to write the Source Code, but should
defer to the Software Engineer regarding matters
relating to Software engineering.

• Wilson could undertake a combination of formal
and informal Software engineering education and
also work under the direct supervision of a
Software Engineer on a Safety-Critical Software
project for an extended period of time (perhaps in
the same company).

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 37

6.0 REFERENCES AND

RELATED DOCUMENTS

Documents cited in these guidelines appear in Section 6.1: Regulations, Section 6.2: References, and Section 6.3:
Codes and Standards.

Related documents that may be of interest to users of these guidelines but are not formally cited elsewhere in this
document appear in Section 6.4: Related Documents.

6.1 REGULATIONS

Engineers and Geoscientists Act [RSBC 1996], Chapter 116.

Workers Compensation Act [RSBC 1996], Chapter 492.

Workers Compensation Act, Occupational Health and Safety Regulation, B.C. Reg. 296/97.

6.2 REFERENCES

Center for Internet Security (CIS). 2019a. CIS Controls. [accessed: 2019 Jun 14].
https://www.cisecurity.org/controls/.

CIS. 2019b. CIS Benchmarks. [accessed: 2019 Nov 26]. https://www.cisecurity.org/cis-benchmarks/.

Engineers and Geoscientists BC. 2018a. Quality Management Guidelines: Direct Supervision. Version 1.3.
Burnaby, BC: Engineers and Geoscientists BC. [accessed: 2019 Jun 14]. https://www.egbc.ca/Practice-
Resources/Quality-Management-Guidelines.

Engineers and Geoscientists BC. 2018b. Quality Management Guidelines: Retention of Project Documentation.
Version 1.3. Burnaby, BC: Engineers and Geoscientists BC. [accessed: 2019 Jun 14].
https://www.egbc.ca/Practice-Resources/Quality-Management-Guidelines.

Engineers and Geoscientists BC. 2018c. Quality Management Guidelines: Documented Checks of Engineering
and Geoscience Work. Version 1.3. Burnaby, BC: Engineers and Geoscientists BC. [accessed: 2019 Jun 14].
https://www.egbc.ca/Practice-Resources/Quality-Management-Guidelines.

Engineers and Geoscientists BC. 2018d. Quality Management Guidelines: Documented Field Reviews During
Implementation or Construction. Version 1.3. Burnaby, BC: Engineers and Geoscientists BC. [accessed: 2019 Jun
14]. https://www.egbc.ca/Practice-Resources/Quality-Management-Guidelines.

https://www.cisecurity.org/controls/
https://www.cisecurity.org/cis-benchmarks/
https://www.egbc.ca/Practice-Resources/Quality-Management-Guidelines
https://www.egbc.ca/Practice-Resources/Quality-Management-Guidelines
https://www.egbc.ca/Practice-Resources/Quality-Management-Guidelines
https://www.egbc.ca/Practice-Resources/Quality-Management-Guidelines
https://www.egbc.ca/Practice-Resources/Quality-Management-Guidelines

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 38

Engineers and Geoscientists BC. 2017. Quality Management Guidelines: Use of Seal. Version 2.0. Burnaby, BC:
Engineers and Geoscientists BC. [accessed: 2019 Jun 14]. https://www.egbc.ca/Practice-Resources/Quality-
Management-Guidelines.

Engineers Canada. 2016. White Paper on Professional Practice in Software Engineering. Ottawa, ON: Engineers
Canada. [accessed: 2019 Jun 14]. https://engineerscanada.ca/publications/white-paper-on-professional-
practice-in-software-engineering.

Ericson II CA. 2015. Hazard Analysis Techniques for System Safety. 2nd ed. Hoboken, NJ: Wiley.

Leveson NG, Thomas JP. 2018. STPA [System Theoretic Process Analysis] Handbook. Cambridge, MA:
Partnership for Systems Approaches to Safety and Security. [accessed: 2019 Jun 14].
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf.

National Institute of Standards and Technology (NIST). 2019. Cybersecurity Framework. [accessed: 2019 Jun
14]. https://www.nist.gov/cyberframework.

OWASP Foundation. 2019. Open Web Application Security Project (OWASP). [website]. [accessed: 2019 Nov 26].
https://owasp.org/.

Shostack A. 2014. Threat Modeling: Designing for Security. Indianapolis, IN: John Wiley & Sons, Inc.

Synopsis Software Integrity Group (Synopsis). 2020. Building Security In Maturity Model (BSIMM) 10.
[accessed: 2019 Nov 26]. https://www.bsimm.com/.

Young W, Leveson NG. 2014. An Integrated Approach to Safety and Security Based on Systems Theory.
Communications of the Association for Computing Machinery, vol. 57, no. 2, pp. 31–35.

6.3 CODES AND STANDARDS

International Electrotechnical Commission (IEC). 2010. IEC 61508:2010 Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-Related Systems. Geneva, Switzerland: IEC.

International Organization for Standardization (ISO). 2018. ISO 26262:2018 Road Vehicles – Functional Safety.
Geneva, Switzerland: ISO.

ISO. 2019. ISO 15026:2019 Systems and Software Engineering -- Systems and Software Assurance. Geneva,
Switzerland: ISO.

ISO. 2006. ISO 62304:2006 Medical Device Software – Software Life Cycle Process. Geneva, Switzerland: ISO.

ISO/IEC. 2013. ISO/IEC 27001:2013 Information Technology -- Security Techniques -- Information Security
Management Systems – Requirements. Geneva, Switzerland: ISO

ISO/IEC/Institute of Electrical and Electronics Engineers (IEEE). 2018. ISO/IEC/IEEE 29148:2018 Systems and
Software Engineering — Life Cycle Processes — Requirements Engineering. Geneva, Switzerland: ISO.

Radio Technical Commission for Aeronautics (RTCA). 2011a. DO-178C Software Considerations in Airborne
Systems and Equipment Certification. Washington, DC: RTCA.

RTCA. 2011b. DO-278A Software Integrity Assurance Considerations for Communication, Navigation,
Surveillance and Air Traffic Management (CNS/ATM) Systems. Washington, DC: RTCA.

https://www.egbc.ca/Practice-Resources/Quality-Management-Guidelines
https://www.egbc.ca/Practice-Resources/Quality-Management-Guidelines
https://engineerscanada.ca/publications/white-paper-on-professional-practice-in-software-engineering
https://engineerscanada.ca/publications/white-paper-on-professional-practice-in-software-engineering
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://www.nist.gov/cyberframework
https://owasp.org/
https://www.bsimm.com/

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 39

Safety Critical Systems Club (SCSC) Assurance Case Working Group (ACWG). 2018. SCSC-141B. Goal Structuring
Notation Community Standard. Version 2. [accessed: 2019 Nov 26].: https://scsc.uk/scsc-141B.

WorkSafeBC. 2019. Occupational Health and Safety Regulation. B.C. Reg. 296/97. [accessed: 2019 Jun 14].
Victoria, BC: WorkSafeBC. https://www.worksafebc.com/en/law-policy/occupational-health-safety/searchable-
ohs-regulation/ohs-regulation/ or https://www.canlii.org/en/bc/laws/regu/bc-reg-296-97/latest/bc-reg-296-
97.html.

Underwriters Laboratories (UL). 2013. UL 1998 Standard for Software in Programmable Components. Edition 3.
Northbrook, IL: UL.

6.4 RELATED DOCUMENTS

Feiler P, Goodenough J, Gurfinkel A, Weinstock CB, Wrage L. 2013. Four Pillars for Improving the Quality of
Safety-Critical Software-Reliant Systems. White paper DM 288. Pittsburgh: Software Engineering Institute.

Holzmann GJ. 2006. The Power of Ten – Rules for Developing Safety Critical Code. IEEE Computer 39 (6), June
2006, pp. 93-95 DOI: 10.1109/MC.2006.212.

IEC. 2006. IEC 62304:2006 Medical Device Software – Software Life Cycle Process. Geneva, Switzerland: IEC.

IEEE. 1994. 1228-1994 - IEEE Standard for Software Safety Plans. Piscataway NJ: IEEE.

ISO. 2016. ISO 13485:2016 Medical Devices – Quality Management Systems – Requirements for Regulatory
Purposes. Geneva, Switzerland: ISO.

ISO/IEC. 2014. ISO/IEC Guide 51:2014, Safety Aspects – Guidelines for Their Inclusion in Standards. Geneva,
Switzerland: ISO.

ISO/IEC. 2011. ISO/IEC 25010:2011 Systems and Software Engineering -- Systems And Software Quality
Requirements and Evaluation. Geneva, Switzerland: ISO.

ISO/IEC. 2012. ISO/IEC 19505-2: 2012 Information Technology – Object Management Group Unified Modeling
Language (OMG UML) – Part 2: Superstructure. Geneva, Switzerland: ISO.

ISO/IEC. 2009. ISO/IEC Guide 73:2009 Risk Management – Vocabulary. Geneva, Switzerland: ISO.

ISO/IEC. 2009. ISO/IEC 15408:2009 Information Technology – Security Techniques – Evaluation Criteria for IT
Security. Geneva, Switzerland: ISO.

ISO/IEC. 2004. ISO/IEC 9126:2004 Software Engineering – Product Quality. Geneva, Switzerland: ISO
(superseded by ISO 25010).

Leveson NG. 1995. Safeware: System Safety and Computers. Reading, MA: Addison-Wesley.

Leveson NG. 2011. Engineering a Safer World: System Thinking Applied to Safety. Cambridge, MA: MIT Press.

https://scsc.uk/scsc-141B
https://www.worksafebc.com/en/law-policy/occupational-health-safety/searchable-ohs-regulation/ohs-regulation/
https://www.worksafebc.com/en/law-policy/occupational-health-safety/searchable-ohs-regulation/ohs-regulation/
https://www.canlii.org/en/bc/laws/regu/bc-reg-296-97/latest/bc-reg-296-97.html
https://www.canlii.org/en/bc/laws/regu/bc-reg-296-97/latest/bc-reg-296-97.html

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 40

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 41

7.0 APPENDIX

Appendix A: Authors and Reviewers .. 43

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 42

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

VERSION 1.0 43

APPENDIX A: AUTHORS AND REVIEWERS

All contributors are presented in alphabetical order by last name within their respective sections.

PRIMARY AUTHORS

Simon Diemert, P.Eng., Critical Systems Labs

Dan Rankin, P.Eng., Engineers and Geoscientists BC

Jens Weber, PhD, P.Eng., University of Victoria

The primary authors would like to acknowledge Philippe Krutchen, PhD, P.Eng., who established the terms of
reference and set the path for development of these guidelines.

The authors would also like to acknowledge Harshan Radhakrishnan, P.Eng., for his assistance with development of
these guidelines.

REVIEW GROUP

Peter Angus, P.Eng., Schneider Electric

Pieter Botman, P.Eng., FEC, True North Systems Consulting

Sandy Buchanan, EIT, Mirai Security

Michael Henrey, EIT, Kardium Inc.

Fieran Mason-Blakley, EIT, Leverage Analytics

Martin Petruk, P.Eng., Vancouver International Airport

Kirk Richardson, EIT, Kobelt Manufacturing

Mark Sudul, P.Eng., Telus

Bastian Tenbergen, PhD, State University of New York at Oswego

Eric Zhelka, P.Eng., Emergency Management British Columbia

PROFESSIONAL PRACTICE GUIDELINES
DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE

NOTES:

Ad # Safety-Critical-Software_COVERS 07 Jul 2020 0924 100% APPROVED BY
FIlE NAME TRIM DA COlOuRS BIG AD/CD
Safety-Critical-Software_COVERS.indd lmf C M Y K
ClIENT BlEED AD PIC INFO

EngGeoBC th
WRITER PROD

DOCKET lIVE PR FONTS

ENG COR hm
DESCRIPTION FOlDS TO PAGE SEPS RuN OuTPuT

EngGeoBC Practice Guidelines 8-1/2” x 11” d of d PROOFREAD ClIENT

PuB NOTES

DDB CANADA 1600 – 777 HORNBY STREET, VANCOuVER, BC, CANADA V6Z 2T3 T 604 687 7911 F 604 640 4344

Ad # Safety-Critical-Software_COVERS 07 Jul 2020 0924 100% APPROVED BY
FIlE NAME TRIM DA COlOuRS BIG AD/CD
Safety-Critical-Software_COVERS.indd lmf C M Y K
ClIENT BlEED AD PIC INFO

EngGeoBC th
WRITER PROD

DOCKET lIVE PR FONTS

ENG COR hm
DESCRIPTION FOlDS TO PAGE SEPS RuN OuTPuT

EngGeoBC Practice Guidelines 8-1/2” x 11” a of d PROOFREAD ClIENT

PuB NOTES

DDB CANADA 1600 – 777 HORNBY STREET, VANCOuVER, BC, CANADA V6Z 2T3 T 604 687 7911 F 604 640 4344

	PREFACE
	TABLE OF CONTENTS
	ABBREVIATIONS
	DEFINED TERMS
	VERSION HISTORY
	1.0 INTRODUCTION
	1.1 PURPOSE OF THESE GUIDELINES
	1.2 ROLE OF ENGINEERS AND GEOSCIENTISTS BC
	1.3 INTRODUCTION OF TERMS
	1.3.1 Safety-Critical Software

	1.4 SCOPE OF THESE GUIDELINES
	1.4.1 Industry-Specific Practice
	1.4.2 Hardware
	1.4.3 Software Security
	1.4.4 Software Engineering Process

	1.5 APPLICABILITY OF THESE GUIDELINES
	1.6 ACKNOWLEDGEMENTS

	2.0 ROLES AND RESPONSIBILITIES
	2.1 COMMON FORMS OF PROJECT ORGANIZATION
	2.2 RESPONSIBILITIES
	2.2.1 Clients
	2.2.2 Software Engineers
	2.2.3 Software Developers
	2.2.4 Software Verification
	2.2.5 Specialist Roles

	3.0 GUIDELINES FOR PROFESSIONAL PRACTICE
	3.1 OVERVIEW
	3.2 SOFTWARE ENGINEERING PROCESSES AND LIFE CYCLE
	3.2.1 Phases of Safety-Critical Software Development
	3.2.1.1 Elicitation of Software Requirements
	3.2.1.2 Development of Software Architecture
	3.2.1.3 Development of Software Source Code
	3.2.1.4 Generation of Software Binaries
	3.2.1.5 Verification of Software
	3.2.1.6 Maintenance of Software

	3.2.2 Use of Third-Party Software Artifacts
	3.2.2.1 Types of Third-Party Software
	3.2.2.2 Assessing the Suitability of Third-Party Software for Safety-Critical Software Projects

	3.3 SAFETY ENGINEERING FOR SAFETY-CRITICAL SOFTWARE
	3.3.1 Hazard Analysis
	3.3.1.1 Identifying Hazards and Causal Factors
	3.3.1.2 Techniques for Hazard Analysis
	3.3.1.3 Example of Hazard Identification

	3.3.2 Risk and Criticality Analysis
	3.3.3 Reliability Engineering
	3.3.4 Safety Cases

	3.4 SECURITY ACTIVITIES FOR SAFETY-CRITICAL SOFTWARE
	3.4.1 Security Risk and Threat Analysis
	3.4.2 Security Controls and Policies
	3.4.2.1 Control of Remotely Accessible Systems

	3.4.3 Security Verification and Validation
	3.4.4 Security Assurance Cases
	3.4.5 Assessment of Third-Party Libraries

	3.5 OBSERVATION OF DEFICIENCIES
	3.6 RELEVANT EXTERNAL STANDARDS AND GUIDELINES

	4.0 QUALITY MANAGEMENT IN PROFESSIONAL PRACTICE
	4.1 QUALITY MANAGEMENT REQUIREMENTS
	4.1.1 Professional Practice Guidelines
	4.1.2 Use of Seal
	4.1.2.1 Sealing Software Engineering Documents
	4.1.2.2 Sealing Software Engineering Work Within an Organization
	4.1.2.3 Sealing Source Code Artifacts
	4.1.2.4 Sealing Evolving Software Engineering Artifacts
	4.1.2.5 Employing Digital Sealing Technology

	4.1.3 Direct Supervision
	4.1.4 Retention of Project Documentation
	4.1.5 Documented Checks of Engineering and Geoscience Work
	4.1.6 Documented Field Reviews During Implementation or Construction

	5.0 PROFESSIONAL REGISTRATION & EDUCATION, TRAINING, AND EXPERIENCE
	5.1 PROFESSIONAL REGISTRATION
	5.2 EDUCATION, TRAINING, AND EXPERIENCE
	5.2.1 Educational Indicators
	5.2.2 Experience Indicators
	5.2.3 Examples of Education and Experience
	5.2.3.1 Formally Trained and Mentored
	5.2.3.2 Experience in Adjacent Discipline
	5.2.3.3 Non–Safety-Critical Software Development Experience
	5.2.3.4 Experience in an Unrelated Discipline

	6.0 REFERENCES AND RELATED DOCUMENTS
	6.1 REGULATIONS
	6.2 REFERENCES
	6.3 CODES AND STANDARDS
	6.4 RELATED DOCUMENTS

	7.0 APPENDIX
	APPENDIX A: AUTHORS AND REVIEWERS

