National Exams May 2013 04-BS-4 Electric Circuits and Power

3 hours duration

Notes:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of assumptions made;
- 2. Candidates may use one of two calculators, a Casio or Sharp approved models. This is a Closed Book exam. One aid sheet written on both sides is permitted.
- 3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
- 4. All questions are of equal value.

Question 1

In the DC circuit of Figure 1 assume the following: $R_1 = 10\Omega$, $R_2 = 7\Omega$, $R_3 = 10\Omega$, $R_4 = 4\Omega$, $R_5 = 1\Omega$, and $V_s = 4$ V. It is observed that $I_2 = 4$ A.

- a) Write Kirchhoff's Current Law (KCL) equations for nodes A, B, and C;
- b) Write Kirchhoff's Voltage Law (KVL) equations for loops ABCA, ACDA and BCDB;
- c) Calculate R_0 ;
- d) Calculate current I_0 and the power dissipated in resistor R_0 .

Figure 1: Circuit diagram for Question 1

Question 2

Consider the circuit of Figure 2. Known parameters are: $R_1 = 12.5 \text{ M}\Omega$, $R_2 = 22.5 \text{ k}\Omega$, $R_3 = 300 \text{ k}\Omega$, $R_4 = 100 \text{ k}\Omega$, $R_5 = 10 \text{ k}\Omega$, $R_6 = 10 \text{ k}\Omega$, $R_7 = 5 \text{ k}\Omega$, $I_s = 2 \text{ A}$ and $V_s = 20 \text{ V}$. Determine the following:

- a) Thevenin equivalent resistance with respect to the load terminal;
- b) Thevenin equivalent voltage with respect to the load terminal;
- c) Power transferred to the load if the load resistance is $R_L = 100 \Omega$.
- d) Determine the load resistance for the maximum power transfer. Determine the maximum power transferred to the load.

Figure 2: Circuit diagram for Question 2

Question 3

In the circuit of Figure 3 $R_1 = 3\Omega$, $R_2 = 3\Omega$, $R_3 = 6\Omega$, $R_4 = 4\Omega$, $R_5 = 4\Omega$, $R_6 = 8\Omega$, L = 20 mH, and $V_s = 12 \text{ V}$. The switch S is closed for a long time. At t = 0 s, the switch S opens.

- a) Calculate the voltage across the resistor R_4 and the inductor current in steady-state while the switch S is closed.
- b) What is the energy stored in the inductor before the switch is opened.
- c) Calculate the time constant of the circuit when the switch is open;
- d) Plot the current $I_L(t)$ from t = -5 ms to t = 25 ms;

Figure 3: Circuit diagram for Question 3

Question 4

In the circuit of Figure 4 assume the following: $L_1 = 160 \text{ mH}$, $L_2 = 80 \text{ mH}$, $R = 4\Omega$, C = 10 mF, $v_{s1}(t) = \sqrt{2} 10 \cos(25t + \frac{\pi}{4}) \text{ V}$, and $v_{s2}(t) = 10 \cos(25t) \text{ V}$. Assume that the circuit is in a steady-state operating condition. Calculate the following:

- a) Impedances Z_{L1} , Z_{L2} , and Z_C ;
- b) Voltage phasor V_1 ;
- c) Current phasors I_{L1} and I_{L2} ;
- d) Resistor current in time-domain, $i_R(t)$.

Figure 4: Circuit diagram for Question 4

Question 5

In the circuit of Figure 5 assume the following: $R_{Line} = 2\Omega$, $X_{Line} = 2\Omega$, $R_{Load} = 6\Omega$, $X_{Load} = 4\Omega$, $X_C = 100\Omega$, $V_s(t) = \sqrt{2} 100 \cos(120 \pi t)$ V. Two steady-state operating conditions, with switch open or closed, are possible. Calculate the following:

- a) When the switch is open: Determine the magnitude of the source current and the real power supplied by the source ;
- b) When the switch is open: Determine the real power absorbed by the line impedance and the real power absorbed by the load;
- c) When the switch is closed: Determine the magnitude of the source current;
- d) When the switch is closed: Determine the real power absorbed by the line impedance and the real power absorbed by the load.

Figure 5: Circuit diagram for Question 5

Problem 6

Design a full-wave bridge diode rectifier for a power supply. Rectifier will be supplied by an ideal AC voltage source (60 Hz, $12 V_{RMS}$). Assume that each diode has an offset voltage of 0.6 V.

- a) Draw the rectifier schematic diagram. Sketch the input voltage, the output voltage, and also specify which diodes conduct during each half-cycle of the AC side voltage.
- b) Sketch the output voltage if the load is a 1000 Ω resistor in parallel with a $8\,\mu F$ capacitor.
- c) Using a 100Ω resistance, design an RC low-pass filter (for DC side) that would attenuate a 120-Hz sinusoidal voltage by 20 dB with respect to the DC gain.

Question 7

A magnetic core is shown in Figure 6. Relative permeability of the core is $\mu_r = 2000$ ($\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H/m}$). Number of winding turns is N = 100. Assume that the core cross section is uniform and the length of air-gap x is much smaller than the dimensions of the core cross-section. Calculate the following.

- a) The magnetomotive force in the core if i = 1 A.
- b) The equivalent reluctance of each part of the magnetic circuit if x = 0.1 mm.
- c) The magnetic flux, flux density and magnetic field intensity in the air gap for i = 1 A and x = 0.1 mm.
- d) Inductance of the coil from Figure 6 as a function of air gap length x.

Figure 6: Magnetic core for Question 7