National Exams May 2013
 04-BS-4 Electric Circuits and Power

3 hours duration

Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of assumptions made;
2. Candidates may use one of two calculators; a Casio or Sharp approved models. This is a Closed Book exam. One aid sheet written on both sides is permitted.
3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
4. All questions are of equal value.

Question 1

In the DC circuit of Figure 1 assume the following: $R_{1}=10 \Omega, R_{2}=7 \Omega, R_{3}=10 \Omega$, $R_{4}=4 \Omega, R_{5}=1 \Omega$, and $V_{s}=4 \mathrm{~V}$. It is observed that $I_{2}=4 \mathrm{~A}$.
a) Write Kirchhoff's Current Law (KCL) equations for nodes A, B, and C;
b) Write Kirchhoff's Voltage Law (KVL) equations for loops ABCA, ACDA and BCDB;
c) Calculate R_{0};
d) Calculate current I_{0} and the power dissipated in resistor R_{0}.

Figure 1: Circuit diagram for Question I

Question 2

Consider the circuit of Figure 2. Known parameters are: $R_{1}=12.5 \mathrm{M} \Omega, R_{2}=22.5 \mathrm{k} \Omega$, $R_{3}=300 \mathrm{k} \Omega, R_{4}=100 \mathrm{k} \Omega_{,} R_{5}=10 \mathrm{k} \Omega, R_{6}=10 \mathrm{k} \Omega, R_{7}=5 \mathrm{k} \Omega, I_{s}=2 \mathrm{~A}$ and $V_{s}=20 \mathrm{~V}$. Determine the following:
a) Thevenin equivalent resistance with respect to the load terminal;
b) Thevenin equivalent voltage with respect to the load terminal;
c) Power transferred to the load if the load resistance is $R_{L}=100 \Omega$.
d) Determine the load resistance for the maximum power transfer. Determine the maximum power transferred to the load.

Figure 2: Circuit diagram for Question 2

Question 3

In the circuit of Figure $3 R_{1}=3 \Omega, R_{2}=3 \Omega, R_{3}=6 \Omega, R_{4}=4 \Omega, R_{5}=4 \Omega, R_{6}=8 \Omega$, $L=20 \mathrm{mH}$, and $V_{s}=12 \mathrm{~V}$. The switch S is closed for a long time. At $t=0 \mathrm{~s}$, the switch S opens.
a) Calculate the voltage across the resistor R_{4} and the inductor current in steady-state while the switch S is closed.
b) What is the energy stored in the inductor before the switch is opened.
c) Calculate the time constant of the circuit when the switch is open;
d) Plot the current $I_{L}(t)$ from $t=-5 \mathrm{~ms}$ to $t=25 \mathrm{~ms}$;

Figure 3: Circuit diagram for Question 3

Question 4

In the circuit of Figure 4 assume the following: $L_{1}=160 \mathrm{mH}, L_{2}=80 \mathrm{mH}, R=4 \Omega$, $C=10 \mathrm{mF}, v_{s 1}(t)=\sqrt{2} 10 \cos \left(25 t+\frac{\pi}{4}\right) \mathrm{V}$, and $v_{s 2}(t)=10 \cos (25 t) \mathrm{V}$. Assume that the circuit is in a steady-state operating condition. Calculate the following:
a) Impedances $\underline{Z_{L 1}}, \underline{Z_{L 2}}$, and $\underline{Z_{C}}$;
b) Voltage phasor $\underline{V_{1}}$;
c) Current phasors $\underline{I_{L 1}}$ and $\underline{I_{L 2}}$;
d) Resistor current in time-domain, $i_{R}(t)$.

Figure 4: Circuit diagram for Question 4

Question 5

In the circuit of Figure 5 assume the following: $R_{\text {Line }}=2 \Omega, X_{\text {Line }}=2 \Omega, R_{\text {Load }}=6 \Omega$, $X_{\text {Load }}=4 \Omega, X_{C}=100 \Omega, V_{s}(t)=\sqrt{2} 100 \cos (120 \pi t) \mathrm{V}$. Two steady-state operating conditions, with switch open or closed, are possible. Calculate the following:
a) When the switch is open: Determine the magnitude of the source current and the real power supplied by the source;
b) When the switch is open: Determine the real power absorbed by the line impedance and the real power absorbed by the load;
c) When the switch is closed: Determine the magnitude of the source current;
d) When the switch is closed: Determine the real power absorbed by the line impedance and the real power absorbed by the load.

Figure 5: Circuit diagram for Question 5

Problem 6

Design a full-wave bridge diode rectifier for a power supply. Rectifier will be supplied by an ideal AC voltage source ($60 \mathrm{~Hz}, 12 \mathrm{~V}_{R M S}$). Assume that each diode has an offset voltage of 0.6 V .
a) Draw the rectifier schematic diagram. Sketch the input voltage, the output voltage, and also specify which diodes conduct during each half-cycle of the AC side voltage.
b) Sketch the output voltage if the load is a 1000Ω resistor in parallel with a $8 \mu \mathrm{~F}$ capacitor.
c) Using a 100Ω resistance, design an RC low-pass filter (for DC side) that would attenuate a $120-\mathrm{Hz}$ sinusoidal voltage by 20 dB with respect to the DC gain.

Question 7

A magnetic core is shown in Figure 6. Relative permeability of the core is $\mu_{\mathrm{r}}=2000$ ($\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$). Number of winding turns is $N=100$. Assume that the core cross section is uniform and the length of air-gap x is much smaller than the dimensions of the core cross-section. Calculate the following.
a) The magnetomotive force in the core if $i=1 \mathrm{~A}$.
b) The equivalent reluctance of each part of the magnetic circuit if $x=0.1 \mathrm{~mm}$.
c) The magnetic flux, flux density and magnetic field intensity in the air gap for $i=1 \mathrm{~A}$ and $x=0.1 \mathrm{~mm}$.
d) Inductance of the coil from Figure 6 as a function of air gap length x.

Figure 6: Magnetic core for Question 7

