NATIONAL EXAMS

Phys-A6: Solid State Physics

3 hours duration

NOTES:

1. If doubt exits as to the interpretation of any question, the candidate must submit with the answer paper, a clear statement of any assumption made.
2. Candidates may use one of two calculators, the Casio or Sharp approved models.
3. This is a CLOSED BOOK EXAM.

Useful constants and equations have been annexed to the exam paper.
4. Any FIVE (5) of the SEVEN (7) questions constitute a complete exam paper.

The first five questions as they appear in the answer book will be marked.
5. When answering questions, candidates must clearly indicate units for all parameters used or computed.

MARKING SCHEME

Questions	Marks				
1	(a) 5	(b) 5	(c) 10		
2	(a) 6	(b) 6	(c) i. 4	(c) ii. 4	
3	(a) 10	(b) 7	(c) 3		
4	(a) 9	(b) 4	(c) 7		
5	(a) 5	(b) 10	(c) 5		
6	(a) 8	(b) 12			
7	(a) 8	(b) 8	(c) 4		

1. A face centered cubic (fcc) lattice and its primitive cell are show in Figure Pla and a lattice plane of this crystal is shown in Figure Plb.

Figure P1a

Figure P1b
$5_{\text {pts }}$ (a) Calculate the packing fraction for this cubic lattice. [Note: $V_{\text {sphere }}=\frac{4 \pi r^{3}}{3}$]
5 pts (b) Find the Miller indices for the plane shown in Figure Plb.
10 pts (c) Find the primitive translation vectors $\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}$ and $\mathbf{b}_{\mathbf{3}}$ for the reciprocal lattice for the fcc lattice.

May 2013
2. The interaction between two inert gas atoms takes the form of the normalized potential $U(R) / \in$ shown in Figure P2.

Figure P2

${ }^{6}$ pes (a) What is the name of this potential?
6 pts (b) Briefly explain what the negative part of the curve signifies?
(c) Measurements done at very low temperature for hydrogen $\left(\mathrm{H}_{2}\right)$ gave the following parameter values

$$
\epsilon=40 \times 10^{-16} \mathrm{erg} \quad \sigma=3 \AA
$$

Assuming that at this temperature the H_{2} molecules are hard spheres in an fcc lattice structure:
4 pts i. Calculate the value of the interaction potential (in Joules) between H_{2} molecules when they are $3.6 \AA$ apart.

4 pts ii. Calculate the cohesive energy in kJ per mole of H_{2}.
\qquad
3. Consider vibrations in a crystal with a monatomic basis where each atom has a mass M and a force constant C between nearest-neighbour lattice planes. Plane displacements are illustrated in Figure P3.

Figure P3

Assuming displacements of the form $u_{s}=u \exp (i s K a)$ all having the time dependence $\exp (-i \omega t)$ and considering only nearest planes,

10 pts (a) Show that the dispersion relation $\omega(K)$ is given by $\omega=\sqrt{\left(\frac{4 C}{M}\right)}\left|\sin \left(\frac{K a}{2}\right)\right|$
7 pts (b) Plot the dispersion relation for the first Brillouin zone.
3 pts (c) What sort of waves are present at the the first Brillouin zone boundaries?

May_2013

4. Particles which behavior follows the Fermi-Dirac distribution are called fermions. The 3-dimensional Fermi surface of fermions is shown in Figure P4. Just like free electrons, the helium-3 (He^{3}) atoms behave like fermions. He^{3} is composed of 3 atomic mass units: 2 protons and 1 neutron. The density of He^{3} near absolute zero temperature is $0.081 \mathrm{~g} / \mathrm{cm}^{3}$.

Figure P4

9 pts (a) Show that He^{3} atoms have a Fermi energy ϵ_{F} of about 7×10^{-16} erg.

4 pts (b) What is the Fermi temperature T_{F} that corresponds to this Fermi energy?

7 pts (c) Assuming that the chemical potential is approximately equal to ϵ_{F}, what is the probability that an atom of He^{3} would occupy an energy level of $E=20 \epsilon_{F}$ at $\mathrm{T}=45^{\circ} \mathrm{K}$?
5. Electron occupancy of various allowed energy bands for five cases is shown in Figure P5. The grey areas indicate states filled with electrons.

Figure P5

5 pts (a) For each of the five cases shown in Figure P5, specify whether the type of crystal is an insulator, a metal, a semiconductor, or a semimetal.

10 pts (b) Assuming that intrinsic silicon (Si) has a constant band gap of 1.08 eV , calculate the electron concentration of intrinsic silicon (Si) at room temperature ($\mathrm{T}=300{ }^{\circ} \mathrm{K}$) if measurements on this semiconductor have shown that the effective mass of an electron is $1.1 m$ and the effective mass of a hole is $0.56 m$ where m is the mass of an electron at rest.
$s_{p t s} \quad$ (c) The Fermi level of an intrinsic semiconductor is situated in the band gap, half way between the valence and conduction bands. If this semiconductor is now heavily doped with donors, briefly explain what happens to the position of the Fermi level?
6. The following questions refer to magnetism present or induced in crystal lattices.

8 pts (a) Briefly explain how a diamagnetic material differs from a paramagnetic material.
12 pts (b) Calculate the magnetic susceptibility of a diamagnetic material having the following properties:
density: $1.785 \times 10^{-4} \mathrm{~g} / \mathrm{cm}^{3}$
atomic radius: $3.1 \times 10^{-9} \mathrm{~cm}$
number of neutrons: 2
number of protons: 2
number electrons: 2

May 2013
7. The diffusion constants D_{0} and activation energies \mathbf{E} for various lattice defects such as impurity atoms or vacancies are listed below.

Host crystal	Atom	$\mathbf{D}_{\mathbf{0}}$ $\left(\mathrm{cn}^{2} / \mathrm{s}\right)$	\mathbf{E} (eV)
Cu	Cu	0.20	2.04
Cu	Zn	0.34	1.98
Ag	Ag	$J 0.40$	1.91
Ag	Cu	1.2	2.00
Ag	Au	0.26	1.98
Ag	Pb	0.22	1.65
Na	Na	0.24	0.45
U	U	0.002	1.20

Host crystal	Atom	$\mathbf{D}_{\mathbf{o}}$ $\left(\mathbf{c m}^{2} / \mathrm{s}\right)$	E (eV)
Si	Al	8.0	3.47
Si	Ga	3.6	3.51
Si	In	16.0	3.90
Si	As	0.32	3.56
Si	Sb	5.6	3.94
Si	Li	0.002	0.66
Si	Au	0.001	1.13
Ge	Ge	10.0	3.1

8 pts (a) Briefly explain how the presence of impurities such as arsenic (As) in pure silicon (Si) can actually be useful in solid state devices.
$8 p t s$ (b) Sodium (Na) has a density of $0.971 \mathrm{~g} / \mathrm{cm}^{3}$ and its atomic weight is 23 amu . If the energy to take an atom of Na from its normal lattice site to a lattice site at the surface of the crystal is 1.05 eV , calculate the concentration of defect vacancies present at a temperature of $300{ }^{\circ} \mathrm{K}$.

4 pts (c) Determine at what rate aluminum (A1) atoms would diffuse into a lattice of pure silicon (Si) at a temperature of $1200^{\circ} \mathrm{K}$.
(1) $\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta) \quad \cos \theta=\frac{1}{2}[\exp (i \theta)+\exp (-i \theta)]$
(2) $T=u_{1} a_{1}+u_{2} a_{2}+u_{3} a_{3}$
(3) $G=v_{1} b_{1}+v_{2} b_{2}+v_{3} b_{3}$
(4) $\quad p=r \times t=\left(\begin{array}{l}p_{1} \\ p_{2} \\ p_{3}\end{array}\right)(x y z)=\left(\begin{array}{l}r_{2} t_{3}-r_{3} t_{2} \\ r_{3} t_{1}-r_{1} t_{3} \\ r_{1} t_{2}-r_{2} t_{1}\end{array}\right)(x y z) \quad$ where $\quad \begin{aligned} & r=r_{1} x+r_{2} y+r_{3} z \\ & t=t_{1} x+t_{2} y+t_{3} z\end{aligned}$
(5) $\quad V_{\min }=\left|a_{1} \cdot a_{2} \times a_{3}\right|$
(6) $b_{1}=2 \pi \frac{a_{2} \times a_{3}}{a_{1} \cdot a_{2} \times a_{3}}$
$b_{2}=2 \pi \frac{a_{3} \times a_{1}}{a_{1} \cdot a_{2} \times a_{3}}$
$b_{3}=2 \pi \frac{a_{1} \times a_{2}}{a_{1} \cdot a_{2} \times a_{3}}$
(7) $\quad 2 d \sin \theta=n \lambda \quad \Delta k=G \quad 2 k \cdot G=G^{2}$
(8) $U(R)=4 \epsilon\left[\left(\frac{\sigma}{R}\right)^{12}-\left(\frac{\sigma}{R}\right)^{6}\right]$
(9) $U_{t o t}=-(2.15)(4 N \varepsilon)$
(10) $\quad F_{s}=C\left(u_{s+1}-u_{s}\right)-C\left(u_{s-1}-u_{s}\right)$
(11) $M \frac{d^{2} u_{s}}{d t^{2}}=C\left(u_{s+1}-u_{s}\right)-C\left(u_{s-1}-u_{s}\right)$
(12) $f(\epsilon)=\frac{1}{\exp \left[\frac{\epsilon-\mu}{k_{B} T}\right]+1}$

$$
\begin{equation*}
\epsilon_{F}=\frac{\hbar}{2 m}\left(\frac{3 \pi^{2} N}{V}\right)^{2 / 3} \tag{13}
\end{equation*}
$$

$n p=4\left(\frac{k_{B} T}{2 \pi \hbar^{2}}\right)^{3}\left(m_{e} m_{h}\right)^{3 / 2} \exp \left(\frac{-E_{g}}{k_{B} T}\right)$
(16) $\quad \mu=\frac{E_{g}}{2}+\frac{3}{4} k_{B} T \ln \left(m_{h} / m_{e}\right)$
$\chi=-\frac{\mu_{o} N Z e^{2}}{6 m}\left\langle r^{2}\right\rangle$
(18) $\frac{n}{N-n}=\exp \left(\frac{-E_{V}}{k_{B} T}\right)$

$$
\begin{equation*}
D=D_{o} \exp \left(\frac{-E}{k_{B} T}\right) \tag{19}
\end{equation*}
$$

May 2013

