- STATICS AND DYNAMICS -
(04-BS-3)

3 HOURS' DURATION

Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer-paper a clear statement of any assumption made.
2. This is a "CLOSED BOOK" examination. However, candidates may bring ONE $81 / 2^{\prime \prime} \times 11$ " sheet of self-prepared notes. Candidates may use one of two calculators, the Casio or a Sharp approved models.
3. Candidates are required to complete 2 questions from PART A and 2 questions from PART B.
4. If more than four questions are presented for assessment then only the first four undeleted solutions encountered will be marked.
5. All questions are of equal value.
6. Hand in examination question paper and self-prepared note sheet (formula sheet) with solution booklet.

PART A - STATICS
 (ANSWER ANY 2 OF THE 3 QUESTIONS)

1. (20 Marks)

Determine the magnitude and sense of the forces in all of the members for the truss shown in figure 1.
NOTE: Each grid division represents a distance of one metre.

FIGURE 1.
2. (20 Marks)

A rigid, weightless boom supports a load, as shown in figure 2 . The boom is hinged to move in the $x-y$ plane only. Using cartesian vector methods;
a) Find the tensile force in the length of cable between the point a on the boom and point b on the wall.
b) Determine the value of the component of the hinge force which prevents the motion of the boom in the z direction

NOTE: Use the origin of the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ co-ordinate axes at point O as shown in the figure.

FIGURE 2.

3. (20 Marks)

Block A has a mass of 185 kg , and block B has a mass of 65 kg . Block C rests on block B as shown in figure 3. Determine the minimum value of the mass of block C in order to maintain the equilibrium position shown in the figure. The static co-efficient of friction between Block A and the inclined plane is $\mathbf{0 . 1 5}$ and the static co-efficient of friction between Block B and the horizontal plane is 0.18

NOTE: Neglect the weight of the link.

FIGURE 3

PARTB - DYNAMICS
 (ANSWER ANY 2 OF THE 3 QUESTIONS)

4. (20 Marks)

A homogeneous cylinder is released from rest at position a in figure 4. It rolls without sliding until it reaches position b. Length b -c of the inclined plane is coated with a lubricant and for purposes of this problem, the co-efficient of friction on this section of the inclined plane can be considered to be zero. Using energy methods determine;
a) the cylinder's angular velocity, and the velocity of the cylinder's centre, when the cylinder reaches position b on the inclined plane.
b) the cylinder's angular velocity, and the velocity of the cylinder's centre, when the cylinder reaches position \boldsymbol{c} on the inclined plane.

NOTE: For a homogeneous cylinder the mass moment of inertia about its centre is:

$$
I o=\frac{1}{2} m r^{2}
$$

FIGURE 4.

A homogeneous disk A has a mass of 10 kg and is connected to a uniform $\operatorname{rod} A B$ which has a mass of 5 kg . If the assembly is released from rest at the position shown in the figure ($\theta=60^{\circ}$), determine the angular velocity of the rod when $\theta=0^{\circ}$.
Note: Assume the disk rolls without slipping. Also neglect the mass of the collar at B and any friction between the collar and the guide rod.
The moment of inertia about the centroid of a slender rod: $I=\frac{1}{12} m l^{2}$

FIGURE 5.
6. (20 Marks)

A ball which has a mass of 3 kg and negligible size has an initial velocity of $15 \mathrm{~m} / \mathrm{s}$ at point A, in the figure shown. If the inclined surface from A to \boldsymbol{B} has negligible friction, determine;
a) the horizontal distance \boldsymbol{d}, that is the distance from point C to D, where the ball hits the horizontal surface.
b) the velocity at which the ball strikes the surface at point D.

FIGURE 6.

