Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to include a clear statement of any assumptions made along with their answer.
2. Any APPROVED CALCULATOR is permitted. This is a CLOSED BOOK exam. However, candidates are permitted to bring ONE AID SHEET written on both sides.
3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
4. All questions are of equal value.

Marking Scheme:

1. (a) 10 marks, (b) 10 marks
2. (a) 10 marks, (b) 10 marks
3. (a.) 10 marks, (b) 5 marks, (c) 5 marks
4. 20 marks
5. 20 marks
6. 20 marks
7. 20 marks
8. 20 marks
9. Find the general solutions of the following differential equations:
(a) $y^{\prime}+x y=2 x e^{-x^{2}}$,
(b) $y^{\prime \prime}+y^{\prime}-6 y=0$.

Note that in each case, ' denotes differentiation with respect to x.
2. Solve the following initial value problems:
(a) $y^{\prime}+2 t y^{2}=0, \quad y(1)=2$,
(b) $y^{\prime \prime}-12 y^{\prime}+45 y=18 \cos (3 t), \quad y(0)=0, y^{\prime}(0)=0$.

Note that in each case, ' denotes differentiation with respect to t.
3. Consider the two lines defined as follows:

$x=3+2 t$,	$y=3$,	$z=1-t$, (parameter t);
$x=s$,	$y=1-2 s$,	$z=2+s$, (parameter s).

(a) Determine whether or not the two lines intersect, and if so, find the point of intersection.
(b) Find a third line orthogonal to both lines.
(c) Is there a plane containing both lines? If so, find an equation for that plane.
4. Find the maximum and minimum values of $f(x, y, z)=x+y-2 z$ over the ellipse $x^{2}+y^{2}+4 z^{2}=1$.
5. Let S be the boundary of the region enclosed by the paraboloid $z=4-x^{2}-y^{2}$ and the plane $z=0$ and let

$$
\mathbf{F}(x, y, z)=x^{2} \mathbf{i}-2 x y \mathbf{j}+x^{2} z \mathbf{k} .
$$

Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} d A$, where n is the unit outward normal on S.
6. At what angle does the line represented parametrically by $x=1-t, y=t, z=2+3 t$ intersect the hyperboloid $z=4-x^{2}+y^{2}$? You may leave your answer as an inverse sine or cosine.
7. Evaluate the line integral $\oint_{C} \mathbf{v} \cdot d \mathbf{r}$ where C is the curve formed by the intersection of the cylinder $x^{2}+y^{2}=4$ and the plane $z+2 x-y=3$, travelled counterclockwise as viewed from the positive z-axis, and \mathbf{v} is the vector function $\mathbf{v}=x \mathbf{i}+(x-y) \mathbf{j}+y z \mathbf{k}$.
8. Find the volume of the solid region inside the ellipsoid

$$
x^{2}+y^{2}+4 z^{2}=5
$$

and above the cone

$$
z=\sqrt{x^{2}+y^{2}}
$$

