Page 1 of 5

National Exams December 2015 04-BS-4 Electric Circuits and Power

3 hours duration

Notes:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of assumptions made;
- 2. Candidates December use one of two calculators, a Casio or Sharp approved models. This is a **Closed Book** exam. **One** aid sheet written on both sides is permitted.
- 3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.

Marking Scheme

Question 1: (a) 5 marks, (b) 5 marks, (c) 5 marks, (d) 5 marks.
Question 2: (a) 5 marks, (b) 5 marks, (c) 5 marks, (d) 5 marks.
Question 3: (a) 5 marks, (b) 5 marks, (c) 5 marks, (d) 5 marks.
Question 4: (a) 5 marks, (b) 5 marks, (c) 5 marks, (d) 5 marks.
Question 5: (a) 5 marks, (b) 5 marks, (c) 5 marks, (d) 5 marks.
Question 6: (a) 5 marks, (b) 5 marks, (c) 5 marks, (d) 5 marks.
Question 7: (a) 5 marks, (b) 5 marks, (c) 5 marks, (d) 5 marks.

Page 2 of 5

Question 1

In the DC circuit of Figure 1 assume the following: $R_1 = 1 \Omega$, $R_2 = 2 \Omega$, $R_3 = 1 \Omega$, $R_4 = 5 \Omega$, $R_5 = 5 \Omega$, $R_6 = 15 \Omega$, $V_{s1} = 30 V$, $V_{s5} = 25 V$, and $I_s = 5 A$.

- a) Write Kirchhoff's Current Law (KCL) equations for nodes A, B, and C.
- b) Write Kirchhoff's Voltage Law (KVL) equations for loops ABDA and ABCA.
- c) Calculate the voltage across resistor R_2 .
- d) Calculate current I_2 and the power dissipated in resistor R_2 .

Figure 1: Circuit diagram for Question 1

Question 2

Consider the circuit of Figure 2. Known parameters are: $R_1 = 12.5 \text{ M}\Omega$, $R_2 = 22.5 \text{ k}\Omega$, $R_3 = 300 \text{ k}\Omega$, $R_4 = 100 \text{ k}\Omega$, $R_5 = 10 \text{ k}\Omega$, $R_6 = 10 \text{ k}\Omega$, $R_7 = 5 \text{ k}\Omega$, and $V_s = 20 \text{ V}$. Determine the following:

- a) Thevenin equivalent resistance seen by the load;
- b) Thevenin equivalent voltage seen by the load;
- c) Power transferred to the load if the load resistance is $R_L = 100 \Omega$.
- d) Determine the load resistance for the maximum power transfer. Determine the power transferred to the load in this case.

Figure 2: Circuit diagram for Question 2

04-BS-4 - December, 2015

Page 3 of 5

Question 3

In the circuit of Figure 3 $R_1 = 3\Omega$, $R_2 = 3\Omega$, $R_3 = 6\Omega$, $R_4 = 4\Omega$, $R_5 = 4\Omega$, $R_6 = 8\Omega$, L = 20 mH, and $V_s = 12 \text{ V}$. The switch S is closed for a long time. At t = 0 s, the switch S opens.

- a) Calculate the voltage across the resistor R_4 and the inductor current in steady-state while the switch S is closed.
- b) What is the energy stored in the inductor at $t = 0_{-}$ s.
- c) Calculate the time constant of the circuit when the switch is open;
- d) Plot the current $I_L(t)$ from t = -5 ms to t = 25 ms;

Figure 3: Circuit diagram for Question 3

Question 4

In the circuit of Figure 4 assume the following: $L_1 = 160 \text{ mH}$, $L_2 = 80 \text{ mH}$, $R_1 = 5 \Omega$, $R_2 = 2 \Omega$, C = 20 mF, and $v_s(t) = \sqrt{2} 10 \cos(100 t) \text{ V}$. Assume that the circuit is in a steady-state operating condition. Calculate the following:

- a) Impedances $\underline{Z_{L1}}$, $\underline{Z_{L2}}$, and $\underline{Z_C}$;
- b) Voltage phasor V_1 ;
- c) Current phasor I_1 ;
- d) Capacitor current in time-domain.

Figure 4: Circuit diagram for Question 4

Question 5

A magnetic core is shown in Figure 5. Assume that the core cross section is uniform and equal to 100 mm^2 , relative permeability $\mu_r = 2000$, number of winding turns N = 100 and current I = 1A ($\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$).

- a) Calculate the magnetomotive force.
- b) Calculate the equivalent reluctance of each part of the magnetic circuit.
- c) Draw the analog circuit representation of the magnetic circuit from Figure 5.
- d) Calculate the magnetic flux, flux density and magnetic field intensity in the air gap.

Figure 5: Magnetic core for Question 5

Question 6

A full-wave diode rectifier is used to provide a DC current to a $50 \,\mathrm{k\Omega}$ resistive load. Rectifier is supplied by an ideal AC voltage source (60 Hz, 110 V_{RMS}) and a transformer with the center-tapped secondary (transformer turns-ratio is $110/10/10 \,\mathrm{V}$).

- a) Draw the rectifier schematic diagram. Sketch the input voltage, the output voltage, the output current, and the current through each of the rectifier diodes.
- b) Find the peak and the average current in the load.
- c) Sketch the input and the output voltage waveforms, if the rectifier diode has on-state voltage drop of 0.5 V.
- d) Using a 100Ω resistance, design an RC low-pass filter (for DC side) that can attenuate a 60 Hz sinusoidal voltage by 20 dB with respect to the DC gain.

04-BS-4 - December, 2015

Question 7

A logic platform controls a two-stage heating and air-conditioning system. It uses the following sensors for operation:

- A) Time elapsed from the last compressor turn-off instant (1 if the minimal rest time t_{REST} is exceeded)
- B) Time elapsed from the moment the fan started blowing (1 if the Stage 1 time t_{Stage1} is exceeded)
- C) Over-temperature (1 if the ambient temperature is higher than t_{HI})
- D) Under-temperature (1 if the ambient temperature is lower than t_{LO})
- E) Heating function switch (1 if ON)
- F) Cooling function switch (1 if ON)
- G) Furnace over-temperature (1 if the furnace temperature is higher than t_{Furnace})

The furnace should be turned on if the heating function switch is in the ON position and the ambient temperature is lower than the set value for heating t_{LO} . The compressor should be turned on if the cooling function switch is in the ON position and the ambient temperature is higher than the set value for cooling t_{HI} . Once the compressor is turned off there is a minimum time delay before it is allowed to turn on again. The fan should be ON if the compressor is ON or if the furnace temperature is higher than $t_{Furnace}$. Fan always turns ON at low-speed and continues with low-speed operation until the set time t_{Stage1} is exceeded or desired temperature is reached. If the desired temperature is not reached and the time allocated to Stage 1 expired, the fan switches to high-speed operation.

- a) Design the logic circuit that controls the furnace.
- b) Design the logic circuit that controls the compressor.
- c) Design the logic circuit that sets the fan in low-speed mode.
- d) Design the logic circuit that sets the fan in high-speed mode.

Note:

Any gate type can be used to construct the logic circuits.