National Exams May 2013
 04-BS-1, Mathematics
 3 hows Duration

Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to include a clear statement of any assumptions made along with their answer.
2. Any APPROVED CALCULATOR is permitted. This is a CLOSED BOOK exarn. However, candidates are permitted to bring ONE AID SHEET written on both sides.
3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
4. All questions are of equal value.

Marking Scheme:

I. 20 marks
2. (a) 7 marks, (b) 7 marks, (c) 6 marks
3. (a) 6 marks, (b) 14 marks
4. 20 marks
5. 20 marks
6. (a) 7 marks, (b) 7 marks, (c) 6 marks
7. 20 marks
8. 20 marks

1. Solve the initial value problem

$$
y^{\prime \prime}-4 y^{\prime}+8 y=5 \cos (2 t)_{+} \quad y(0)=0, y^{\prime}(0)=0
$$

where 'denotes differentiation with respect to t.
2. Find the general solution of the following differential equations:
(a) $y^{\prime}+2 x y=2 x e^{-x^{2}}$,
(b) $y^{\prime}+2 x y^{2}=0$,
(c) $y^{\prime \prime}-2 y^{\prime}+3 y=0$.
3. (a) Find the eigenvalues and the eigenvectors of the matrix $A=\left(\begin{array}{cc}4 & 3 \\ -1 & 0\end{array}\right)$.
(b) Solve the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=4 x+3 y \\
& \frac{d y}{d t}=-x+t
\end{aligned}
$$

subject to the initial conditions $x(0)=2, y(0)=-1$.
4. Let $f(x, y)=1+x \ln (x y-5)$. Find a formula for the plane tangent to the surface $z=f(x, y)$ at the point $(2,3)$ and use the tangent plane to approximate $f(2.1,2.95)$.
5. Find the surface area of that portion of the surface $z=1-\sqrt{x^{2}+y^{2}}$ that lies in the first octant.
6. Consider the two lines defined as follows:

$$
\begin{array}{lll}
x=3-2 t, & y=3, & z=3-t, \text { (parameter } \mathrm{t}) ; \\
x=s, & y=1-2 s, & z=-s, \text { (parameter } \mathrm{s})
\end{array}
$$

(a) Determine whether or not the two lunes intersect, and if so, find the point of intersection.
(b) Find a third line orthogonal to both lines:
(c) Is there a plane containing both lines? If so, find an cquation for that plane.
7. Evaluate the line integral $\oint_{C} v \cdot d r$ where C is the curve formed by the intersection of the cylinder $x^{2}+y^{2}=4$ and the plane $z+2 x-y=3$, travelled counterclockwise as viewed from the positive z-axis, and v is the vector function $\mathrm{v}=x \mathrm{i}+(x-y) \mathrm{j}+y z \mathrm{k}$.
8. Find the volume of the solid region inside the ellipsiod

$$
x^{2}+y^{2}+4 z^{2}=5
$$

and above the conte

$$
z=\sqrt{x^{2}+y^{2}}
$$

