National Exams December 2016
 98-Comp-A1, Electronics
 3 hours duration

NOTES:

1. If doubt exists as to the interpretation of any question, the candidate is urged to indicate, with the answer, a clear statement of any assumptions made.
2. This is a OPEN BOOK exam.

Any non-communicating calculator is permitted.
3. FIVE (5) questions constitute a complete exam paper.

The first 5 questions as they appear in the answer book will be marked.
4. Each question is of equal value.

Question 1 (20 marks)

Figure 1. All diodes have a forward voltage drop $\mathrm{V}_{\mathrm{D}}=0.7 \mathrm{~V}$. Diode D_{2} has a maximum reverse voltage of 4.3 V .

The circuit shown in Figure 1 is in steady state:
a) Sketch V_{1} and V_{o} as a function of time, indicating peak voltages.
b) Sketch V_{R}, as a function of time, indicating peak voltages.
c) What is the peak current through R_{1} ?
d) Which diode has the largest peak power dissipation? What power rating would you choose for this diode?

Question 2 (20 marks)

Figure 2. $\mathrm{I}_{\mathrm{ref}}=100 \mu \mathrm{~A}, \mathrm{k}_{\mathrm{n}}{ }^{\prime}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{k}_{\mathrm{p}}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~W} / \mathrm{L}=50,\left|\mathrm{~V}_{\mathrm{t}}\right|=1 \mathrm{~V}$, $\mathrm{V}_{\mathrm{A}}=50 \mathrm{~V}$ and $\chi=0.2$. $(\mathrm{W} / \mathrm{L})=5$ for all transistors.

For the circuit shown in Figure 2:
a) Draw a small signal equivalent model for the circuit.
b) Find the input resistance of the circuit.
c) What is the small signal AC voltage gain of the circuit?

Question 3 (20 marks)

Figure 3.
For the circuit shown in Figure 3:
a) Find the circuit DC gain.
b) Find the circuit AC gain.
c) Sketch the frequency response, indicating 3 dB frequencies for this circuit.
d) If the op-amp output is limited by the supply to $+/-15 \mathrm{~V}$, and $V_{i}(t)=\mathrm{A} \sin (120 \pi \mathrm{t}) \mathrm{V}$, find a maximum value of A such that $V_{o}(t)$ is not clipped or distorted..

Question 4(20 marks)

Figure 4. $I=0.2 \mathrm{~mA}, \beta=100, \mathrm{~V}_{\mathrm{A}}=100 \mathrm{~V}$.
For the circuit shown in Figure 4:
a) Draw the small signal equivalent circuit.
b) Find the small signal input resistance R_{i} and output resistance Ro.
c) Find the open circuit voltage gain for the amplifier and the loaded voltage gain.

Question 5 (20 marks)

Figure 5. $\mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$
For the circuit shown in Figure 5:
a) What is the condition for oscillation of the output?
b) What are the frequency and amplitude of the output signal?
c) Choose component values R_{1} and R_{2} to sustain oscillation.

Question 6 (20 marks)

Consider a CMOS inverter with parameters $\mathrm{k}_{\mathrm{n}}{ }^{\prime}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{k}_{\mathrm{p}}{ }^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$, $\left|\mathrm{V}_{\mathrm{t}}\right|=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$.
a) Synthesize a CMOS logic circuit that will realize the Boolean function

$$
F=\overline{D+A \cdot(B+C)}
$$

b) An inverter in this technology with a minimum gate length $\mathrm{L}=0.5 \mu \mathrm{~m}$ has a symmetric transfer function for NMOS W/L $=2$ and $\operatorname{PMOS} \mathrm{W} / \mathrm{L}=5$. Choose sizes for the transistors in the gate design from a) in order to maintain a symmetric characteristic.
c) If the gate must drive a capacitance of 1 pF , estimate the propagation delay for this circuit?

Question 7 (20 marks)

Figure 6.
a) Write expressions relating V_{1}, V_{2}, and V_{3} to $V_{\text {in }}$.
b) Write expressions relating V_{4} and V_{5} to V_{1}, V_{2}, and V_{3}.
c) If 4 output bits are needed, how many comparators would be required?
d) What is the resolution (in volts) of this circuit?

Marking Scheme

1. 20 marks total (4 parts, 5 marks each)
2. 20 marks total
(a. 7 marks, b. 5 marks, c. 8 marks)
3. 20 marks total
(4 parts, 5 marks each)
4. 20 marks total
(a. 7 marks, b. 6 marks, c. 7 marks)
5. 20 marks total
(a. 10 marks, b. 5 marks, c. 5 marks)
6. 20 marks total
(a. 7 marks, b. 6 marks, c. 7 marks)
7. 20 marks total
(4 parts, 5 marks each)
