Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
2. NO CALCULATOR is permitted. This is a CLOSED BOOK exam. However, candidates are permitted to bring ONE AID SHEET written on hoth sides.
3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
4. All questions are of equal value.

Marking Scheme:

1. (a) 10 marks, (b) 10 marks
2. (a) 6 marks, (b) 6 marks, (c) 8 marks
3. (a) 7 marks, (b) 7 marks, (c) 6 marks
4. (a) 12 marks, (b) 8 marks
5. 20 marks
6. 20 marks
7. 20 marks
8. (a) 7 marks, (b) 6 marks, (c) 7 marks
9. (a) Solve the initial value problem

$$
2 y^{\prime \prime}-7 y^{\prime}+3 y=10 e^{3 t}, \quad y(0)=0, \quad y^{\prime}(0)=4
$$

Note that ' denotes differentiation with respect to t.
(b) Find the general solution, $y(x)$, of the differential equation

$$
2 x^{2} y^{\prime \prime}+x y^{\prime}-y=3 x^{2}
$$

Note that ' now denotes differentiation with respect to x.
2. Let \mathcal{P} be the plane passing through the three points $(0,1,4),(1,1,3)$ and $(0,2,2)$.
(a) Find an equation of the form $a x+b y+c z=d$ for plane \mathcal{P}. (This is variously called the normal, general, or implicit equation for the plane.)
(b) Find a parametric representation for the plane \mathcal{P}. (This is often called the vector, or parametric, equation for the plane.)
(c) Find the line of intersection between the plane \mathcal{P} and the plane

$$
y+z=1
$$

3. Let \mathcal{F} and \mathcal{G} be the surfaces defined by the the equations

$$
3 x^{2}+2 y^{2}-2 z=1
$$

and

$$
x^{2}+y^{2}+z^{2}-4 y-2 z+2=0
$$

respectively.
(a) Find equations for the line perpendicular to \mathcal{F} at the point $(1,1,2)$.
(b) Find an equation for the plane tangent to \mathcal{G} at the point $(1,1,2)$.
(c) Find an equation for the the line tangent to the intersection of the surfaces at the point ($1,1,2$).
4. Let S_{1} be the plane $2 x+z+4=0$ and S_{2} be the paraboloid $z=4-x^{2}-2 y^{2}$.
(a) Set up the integral for the volume of the solid region above the plane \mathcal{S}_{1} and below the paraboloid S_{2}.
(b) Evaluate the integral from part (b). Hint, use the change of variables $x=1+r \cos \theta, y=$ $(1 / \sqrt{2})_{r} \sin \theta$.
5. Find the maximum and minimum values of $f(x, y, z)=x+2 y-z$ over the ellipsoid $x^{2}+y^{2}+3 z^{2}=1$.
6. Find the work done by the field $\mathrm{F}(x, y, z)=x \mathbf{i}+y^{2} \mathbf{j}-3 z \mathbf{k}$ in moving a particle from the point $(0,0,2)$ to the point $(3 \pi,-2,0)$ along the path $x=6 t, y=-2 \sin t, z=2 \cos t$.
7. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d S_{\text {}}$ where

$$
\mathbf{F}(x, y, z)=4 x \mathbf{i}+2 x^{2} \mathbf{j}-3 \mathbf{k}
$$

and S is the surface of the region bounded by the cone $z=4-\sqrt{x^{2}-y^{2}}$ and the plane $z=0$.
8. Let $x=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$, and let $A=\left(\begin{array}{ccc}3 & -1 & 1 \\ -1 & 3 & -1 \\ 2 & -2 & 4\end{array}\right)$
(a) Show that 2 is an eigenvalue of A and find an associated eigenvector.
(b) Show that x is an eigenvector of A and find the associated eigenvalue.
(c) Find the general solution to the differential equation $\frac{d y}{d t}=A y$.

