National Exams December 2011 04-BS-1, Mathematics
 3 Hours Duration

Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
2. NO CALCULATOR is permitted. This is a CLOSED BOOK exam. However, candidates are permitted to bring ONE AID SHEET written on both sides.
3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
4. All questions are of equal value.

Marking Scheme.

1. (a) 12 marks, (b) 8 marks
2. (a) 10 marks, (b) 10 marks
3. 20 marks
4. 20 marks
5. 20 marks
6. 20 marks
7. (a) 3 marks, (b) 3 marks, (c) 14 marks
8. 20 marks
9. Let P be the plane passing through the three points $(0,1,2),(1,3,-1)$ and $(2,0,1)$.
(a) Find an equation representing the plane P.
(b) Find the line of intersection between the plane P and the plane

$$
x-2 y+z=3
$$

2. (a) Find the eigenvalues and the eigenvectors of the matrix

$$
\left(\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right)
$$

(b) Solve the system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=3 x-2 y \\
& \frac{d y}{d t}=x+y+e^{-2 t}
\end{aligned}
$$

subject to the initial conditions $x(0)=2, y(0)=-1$.
3. Find the solution, $f(x)$, of the differential equation

$$
y^{\prime \prime}+9 y=\sec 3 x
$$

$y^{\prime}(0)=0, y(0)=$ I. Note that ' denotes differentiation with respect to x.
4. Find an equation for the line tangent to the intersection of the surfaces

$$
x^{2}+y^{2}-6 z=11
$$

and

$$
4 x^{2}+y^{2}+z^{2}-4 y-4 z+3=0
$$

at the point $(1,0,2)$.
5. At what angle does the line represented parametrically by $x=2-t, y=t, z=2+2 t$ intersect the hyperboloid $z=4-x^{2}+y^{2}$? You may leave your answer as an inverse sine or cosine.
6. Let S be the surface of the region defined by $x^{2}+4 y^{2} \leq 1, x \geq 0, y \geq 0,0 \leq z \leq 4$, and let F be the vector function $F(x, y, z)=\left(y^{3}, x^{3}, z^{3}\right)$. Evaluate the integral of F over the surface S.
7. Let C be the curve formed by the intersection of the cylinder $x^{2}+y^{2}=9$ and the plane $z=1+y-2 x$, travelled clockwise as viewed from the positive z-axis, and let v be the vector function $v=4 z \mathbf{i}-2 y \dot{j}+2 y k$.
(a) Evaluate the divergence of v
(b) Evaluate the curl of v
(c) Evaluate the line integral $\oint_{C} v \cdot d r$.
8. Find the generai solution of the differential equation

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=3 x^{4}
$$

Note that ' denotes differentiation with respect to x.

