National Exams May 2013 04-CHEM-A2, Mechanical and Thermal Operations 3 hours duration

NOTES

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
2. The examination is an OPFN BOOK EXAM.
3. Candidates may use any non-communicating calculator.
4. All problems are worth 25 marks. Two problems from cach of sections A and B must be attempted.
5. Only the first two questions as they appear in the answer book from each section will be marked.
6. State all assumptions clearly.
7. Useful tables and figures are appended at pp, 6-12.

National Exams
04-CHEM-A2, Mechanical and Thermal Operations

Section A: Mechanical Operations

A1. [25 marks] An elevated storage tank contains water at $180^{\circ} \mathrm{F}$ as shown in Fig. 1. It is desired to have a discharge rate at point 2 of 100 Gal (US)/min. What must be the height H in feet of the surface of the water in the tank relative to the discharge point? All pipe work is schedule 40 commercial steel.

Fig. 1: Tank discharge system for QA1
Useful information is appended as Tables A1, A2, A3 and Figs A1 and A2.
A2. [25 marks overall] Ethylene oxide is stored in a tank and for safety reasons the vapour space above the liquid ethylene oxide is purged of oxygen then padded with nitrogen. The nitrogen is supplied from a $1.4 \mathrm{MPa}(\mathrm{g})$ source and is delivered to the vessel through 10 m of 1 -in schedule 40 commercial steel pipe regulated to a pressure of $600 \mathrm{kPa}(\mathrm{g})$. If the nitrogen regulator were to fail, the storage tank would be exposed to the full supply pressure of $1.4 \mathrm{MPa}(\mathrm{g})$ which would exceed the pressure rating of the tank. Therefore, to prevent rupture of the tank a relief device must be installed to vent the nitrogen.
Determine the mass flow rate of nitrogen, assuming adiabatic choked flow through the delivery pipe, required to prevent the pressure from rising within the tank in the event of a regulator failure. Assume the ambient temperature and pressure are $26^{\circ} \mathrm{C}$ and 101 kPa , respectively. The universal gas constant, R, has a value of 8.314 $\mathrm{kPa} \cdot \mathrm{m}^{3} / \mathrm{kg}-\mathrm{mol} \cdot \mathrm{K}$ and for N_{2}, the molecular weight is $28 \mathrm{~kg} / \mathrm{kg}-\mathrm{mol}$ and $\gamma=1.4$.
Useful pipe information is appended as Table A1.
A3. [25 marks overall] A catalytic packed bed reactor uses cylindrical-shaped catalyst pellets. The pellets (assumed to be non-porous) have a height to diameter ratio of unity (i.e. $h=d$) and are $4-\mathrm{mm}$ in diameter. The density of the catalyst pellets is $1800 \mathrm{~kg} / \mathrm{m}^{3}$ and the bulk density of the overall packed bed is $1170 \mathrm{~kg} / \mathrm{m}^{3}$. The bed cross-sectional area is $0.15 \mathrm{~m}^{2}$ and it is 2.5 m in length. The superficial velocity of the vapour flowing through the bed is $1.5 \mathrm{~m} / \mathrm{s}$. Calculate the following:
(a) [5 marks] The porosity of the bed.
(b) [5 marks] The effective diameter, D_{p} of the pellets.
(c) [5 marks] The ratio of the total surface area in the bed to the total volume of the bed (i.e. the void volume plus the particle volume) in m^{-1}.

National Exams 04-CHEM-A2, Mechanical and Thermal Operations

(d) [10 marks] The pressure drop through the bed given that the density of vapour is $0.62 \mathrm{~kg} / \mathrm{m}^{3}$ and the viscosity of the vapour is $1.75 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$.

Useful information is appended as Table A4.

04-CHEM-A2, Mechanical and Thermal Operations

Section B: Thermal Operations

B1. [25 marks overall] A composite wall of height H and of unit length normal to the page is insulated at its ends and is comprised of four different materials, arranged as shown below in Fig. 2.

Fig. 2: Composite wall for QB1
(a) [5 marks] Sketch the thermal circuit of the system.
(b) [10 marks] Consider a wall for which $H=3 \mathrm{~m}, H_{B}=H_{C}=1.5 \mathrm{~m}, L_{1}=L_{3}=$ $0.05 \mathrm{~m}, L_{2}=0.10 \mathrm{~m}, k_{A}=k_{D}=50 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}, k_{B}=10 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$, and $k_{C}=1 \mathrm{~W}$ $\mathrm{m}^{-1} \mathrm{~K}^{-1}$. In addition, $T_{\infty, 1}=200^{\circ} \mathrm{C}, h_{1}=50 \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-1}, T_{\infty, 2}=25^{\circ} \mathrm{C}$, and $h_{2}=10$ $\mathrm{W} \mathrm{m} \mathrm{m}^{-2} \mathrm{~K}^{-1}$. Assuming that surfaces normal to the general heat flow direction are isothermal, what is the rate of heat transfer through the wall? What are the interface temperatures, T_{1} and T_{2} ?
(c) [10 marks] If instead of materials B and C , there was only C sandwiched between A and D, what should be its thickness for the rate of heat transfer to be the same as that calculated in b)?
B2. [25 marks] A cross-flow heat exchanger with both fluids unmixed has an overall heat transfer coefficient of $U=2270 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$. Both streams are water and have equal flow rates of $75.6 \mathrm{~kg} / \mathrm{min}$. It one stream is cooled from $94^{\circ} \mathrm{C}$ to $72^{\circ} \mathrm{C}$ whilst the other fluid is initially at $38^{\circ} \mathrm{C}$ calculate the heat transfer surface area.
Useful information is appended as Table B1 and Fig B1.
B3. [25 marks overall]
(a) [10 marks] By equating the rate of decrease of enthalpy of a solid body of volume V to the rate of heat loss from its surface of area A by radiation alone, show that the governing differential equation is:

$$
\left(\rho V C_{P}\right) \frac{d T}{d t}+A \varepsilon \sigma T^{4}=0
$$

National Exams
 04-CHEM-A2, Mechanical and Thermal Operations

(b) [15 marks] A brass rod, 2-m long and I-m in diameter is removed from a heat treatment furnace at $400^{\circ} \mathrm{C}$, placed on a trestle, and allowed to cool in a quiescent environment. Assuming it cools by radiation alone (i.e. conduction through the trestle supports and heat loss by convection are negligible), calculate the time it takes to cool by $100^{\circ} \mathrm{C}$. The density and specific heat of brass are $8526 \mathrm{~kg} / \mathrm{m}^{3}$ and $382 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$. The trestle support only covers 5% of the surface and the brass is oxidized on being heat-treated.
The Stefan-Boltzmann constant, $\sigma=56.7 \times 10^{-12} \mathrm{~kW} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}$. Other useful data relating to emissivity is appended as Fig. B2.

National Exams

04-CHEM-A2, Mechanical and Thermal Operations
Table A1: Dimensions of Standard Pipe

$\begin{array}{c}\text { Nominal } \\ \text { Pipe Size } \\ \text { (in) }\end{array}$	$\begin{array}{c}\text { Outside } \\ \text { Diameter } \\ \text { (in) }\end{array}$	Schedule	$\begin{array}{c}\text { Wall } \\ \text { Thickness } \\ \text { (in) }\end{array}$	$\begin{array}{c}\text { Inside } \\ \text { Diameter } \\ \text { (in) }\end{array}$	$\begin{array}{c}\text { Cross- } \\ \text { sectional } \\ \text { Flow Area } \\ \text { (in }\end{array}$	$\begin{array}{c}\text { Cross- } \\ \text { sectional } \\ \text { Flow Area } \\ \left(\mathbf{m}^{2}\right)\end{array}$
	1.315	10	0.109	1.097	0.945	0.0006098

Table A2: Surface Roughness for Common Pipe materials

Material	Surface Roughness		
	$\varepsilon(\mathrm{ft})$	$\varepsilon(\mathrm{in})$	$\varepsilon(\mathrm{mm})$
Drawn Tubing (brass, lead, glass, plastic etc.)	0.000005	0.00006	0.00152
Commercial Steel or Wrought Iron	0.00015	0.0018	0.0457
Asphalted Cast Iron	0.0004	0.0048	0.122
Galvanized Iron	0.0005	0.006	0.152
Cast Iron	0.00085	0.0102	0.259

04-CHEM-A2, Mechanical and Thermal Operations

Table A.3: Equivalent lengths $(I / D)_{\mathrm{eq}}$ and loss coefficients (k) for turbulent flow through valves and fittings ${ }^{\text { }}$

Type of titting or valve	Loss coefficient, k	Equivalent length. L / d 。
45° ell, standard ${ }^{\text {a b-4.f.t. }}$	0.35	16
45° ell, long radius ${ }^{5}$	0.2	-
90° ell, standard ${ }^{\text {a,b,b,d, }, 4, t m}$	0.75	30
long radius ${ }^{\text {a }, \text { e, ers }}$	0.45	29
square or miter ${ }^{\text {m }}$	1.3	57
180° bend, close return ${ }^{\text {a,b.s }}$	1.5	50
Tee, std, along run, branch blanked offr	0.4	20
used as ell, eatering num, ${ }^{\text {din }}$	1.0	60
used as ell, entering branch ${ }^{\text {t.d. A }}$	1.0	60
branch flowing ${ }^{\text {f.h.t }}$	1.0	-
Coupling ${ }^{\text {b,F }}$	0.04	0.1
Union ${ }^{\text {c }}$	0.04	0.1
Ball valve, orifice to d_{0} ratio 0.9, fully open	0.17	13
Gate valve, open ${ }^{\text {d. } 8 .}$)	0.17	13
${ }_{4}^{3}$ openf	0.9	35
open ${ }^{\text {P }}$	4.5	160
$\frac{1}{4}$ operi	24.0	900
Diaphragm valve, open"	2.3	-
$\frac{1}{4}$ openf	2.6	-
$\frac{1}{2}$ opent	4.3	-
${ }_{4}^{1}$ openf	21.0	-
Globe valve, bevel seal, openert	6.0	340
$\frac{1}{2}$ opero	9.5	-
Globe valve, composition seat. open	6.0	340
$\frac{1}{2}$ open ${ }^{\text {P }}$	8.5	-
Gilobe valve, plug disk, open	9.0	450
$\frac{3}{4}$ open ${ }^{\text {P }}$	13.0	-
$\frac{1}{2}$ oper ${ }^{\prime \prime}$	36.0	-
$\frac{1}{4}$ open*	112.0	-
Angle vaive, open**	2.0	145
γ or blowotit valve, open ${ }^{\text {e/f }}$	3.0	175
Check valve, swing ${ }^{\text {a/R, }}$	2.04	135
disk check valve	$10.0{ }^{4}$	-
bafl check valve	$70.0{ }^{\text {* }}$	-
Foot valver	15.0	420
- This table was compiled from Lapple \|L1]: Chemica! Engineers* Handlook [P2]: and the Crane Co. [C3]. New York: Irom Perry's Chemical Engineers' Handbook, 6th ed., Perry and Green (eds.), McGraw-Hill. New York. 1984; reproduced from Tech. Paper 410 . Flow of Fluids, courtesy Crane Co.		
*Flow of Fluids through Vahter. Fittings, and Pipe. Tech Paper 410., Crane Co., 1969.		
${ }^{3}$ Freeman: Experiments upon the Flow' of Wauer in Pipes and Pipe Fitrings. American Society of Mechanital Engincers, New Yotk, 1941.		
${ }^{\text {'Gibson: Hydraulics and Is Applications. Sth ed., Constable, London. } 1952 .}$		
${ }^{4}$ Giesecke and Badgett: Heating, Piping Air Condil	(1932)	

[^0]National Exams
04-CHEM-A2, Mechanical and Thermal Operations
Fig. A1: Fanning friction factor as a function of $N_{R z}$ and ε / D^{2}

[^1]
National Exams

04-CHEM-A2, Mechanical and Thermal Operations

For a sudden expansion, as shown below, the expansion loss coefficient can be calculated from [MSH cf. Eq.(5.69) p122]:

$$
\begin{equation*}
k_{e}=\left(1-\frac{d_{1}^{2}}{d_{2}^{2}}\right)^{2}=\left(1-\beta^{2}\right)^{2} \quad \beta=d_{\mathrm{t}} / d_{2} \tag{Al}
\end{equation*}
$$

For a sudden contraction, shown below, an appropriate empirical equation for the contraction loss coefficient for turbulent flow is [MSH cf. Eq. (5.71) p123]:

$$
\begin{equation*}
k_{c}=0.42 \cdot\left(1-\frac{d_{2}^{2}}{d_{1}^{2}}\right)^{2}=0.42 \cdot\left(1-\beta^{2}\right)^{2} \quad \beta=d_{2} / d_{1} \leq 0.76 \tag{A2}
\end{equation*}
$$

Figure A. 2 shows Eqs. (A1) and (A2) in graphical form.

Fig. A2: Loss coefficients for sudden expansion and contraction ${ }^{3}$

[^2]04-CHEM-A2, Mechanical and Thermal Operations
Table A4: Sphericity of particles [cf. MSH Table 7.I, p164]

Particle shape	ϕ_{s}	Particle shape	ϕ_{s}
Sphere	1.0	Old beach sand	Up to 0.86
Cube	1.0	Average for various sands	0.75
Cylinder		Discs	
$h=d$	0.87	$h=d / 3$	0.76
$h=5 d$	0.70	$h=d / 6$	0.60
$h=10 d$	0.58	$h=d / 10$	0.47
Crushed solids	$0.5-0.7$	Granular particles	$0.7-0.8$
Mica flakes	0.28	Coal dust	0.73
Wheat	0.85	Nickel saddles	0.14
Raschig rings	$0.26-0.53$	Berl saddles	$0.30-0.37$

National Exams
04-CHEM-A2, Mechanical and Thermal Operations
Table B1: Specific heat capacity of water

$T\left[{ }^{\circ} \mathrm{C}\right]$	$C_{P}[\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}]$	$T\left[{ }^{\circ} \mathrm{C}\right]$	$C_{P}[\mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}]$
35	4178	70	4190
40	4179	75	4193
45	4180	80	4197
50	4181	85	4201
55	4183	90	4206
60	4185	95	4212
65	4187	100	4217

Fig. B1: LMTD correction factor, F, for a one-pass cross-flow exchanger with both passes unmixed ${ }^{4}$

NB. If $R>1$, we can evaluate F using $P R$ in place of P and I / R in place of R.

[^3]
04-CHEM-A2, Mechanical and Thermal Operations

Fig. B2: Temperature dependency on the total hemispherical emissivity of metals ${ }^{5}$

[^4]
[^0]: ${ }^{1}$ From: Brodkey, R.S. and Hershey, H.C. (1988) Transport Phenomena: A unified approach McGraw-Hill, NY, Table 10.5, p 435.

[^1]: ${ }^{2}$ From: Fluid Mechanics for Chemical Engineers, $Z^{\text {nd }}$ Ed, by Noel de Nevers (1991) The McGraw-Hill Company Inc.

[^2]: ${ }^{3}$ Brodkey and Hershey (1988) op cit. Fig. 10.19, p 428.

[^3]: ${ }^{4}$ From: Lienhard, JH (1987) A Heat Transfer Textbook $2^{\text {nd }}$. Ed. Prentice-Hall Inc., NJ, Fig.3.17, p 100.

[^4]: ${ }^{5}$ From: Ozisik, M.N. (1973) "Radiative Transfer" John Wiley \& Sons, p 103.

