National Exams May 2011
 04-BS-4 Electric Circuits and Power

3 hours duration

Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of assumptions made;
2. Candidates may use one of two calculators, a Casio or Sharp approved models. This is a Closed Book exarn. One aid sheet written on both sides is permitted.
3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
4. All questions are of equal value.

Marking Scheme

Question 1: (a) 5 marks, (b) 5 marks, (c) 5 marks, (d) 5 marks.
Question 2: (a) 5 marks, (b) 5 marks, (c) 5 marks, (d) 5 marks.
Question 3: (a) 5 marks, (b) 5 marks, (c) 5 marks, (d) 5 marks.
Question 4: (a) 5 marks, (b) 5 marks, (c) 5 marks, (d) 5 marks.
Question 5: (a) 5 marks, (b) 5 marks, (c) 5 marks, (d) 5 marks.
Question 6: (a) 5 marks, (b) 5 marks, (c) 5 marks, (d) 5 marks.
Question 7: (a) 5 marks, (b) 5 marks, (c) 5 marks, (d) 5 marks.

Question 1

In the DC circuit of Figure 1 assume the following: $R_{1}=3 \Omega, R_{2}=6 \Omega, R_{3}=15 \Omega, R_{4}=8 \Omega$, $R_{5}=6 \Omega$, and $V_{s}=24 \mathrm{~V}$. It is observed that $I_{5}=2 \mathrm{~A}$.
a.) Write Kirchhoff's Current Law (KCL) equations for nodes A, B, and C;
b) Write Kirchhoff's Voltage Law (KVL) equations for loops $R_{1} R_{3} R_{o}$ and $R_{1} V_{s} R_{5} R_{o}$;
c) Calculate voltage $V_{B D}$ and current I_{3};
d) Calculate R_{0}, I_{o} and the power dissipated in resistor R_{o}.

Figure 1: Circuit diagram for Question 1

Question 2

Consider the circuit of Figure 2. Known parameters are: $R_{1}=12.5 \mathrm{M} \Omega, R_{2}=22.5 \mathrm{k} \Omega$, $R_{3}=300 \mathrm{k} \Omega, R_{4}=100 \mathrm{k} \Omega, R_{5}=10 \mathrm{k} \Omega, R_{6}=10 \mathrm{k} \Omega, R_{7}=5 \mathrm{k} \Omega$, and $V_{s}=20 \mathrm{~V}$. Determine the following:
a) Thevenin equivalent resistance seen by the load;
b) Thevenin equivalent voltage seen by the load;
c) Power transferred to the load if the load resistance is $R_{L}=100 \Omega$.
d) Determine the load resistance for the maximum power transfer. Determine the power transferred to the load in this case.

Figure 2: Circuit diagram for Question 2

Question 3

In the circuit of Figure $3 R_{1}=3 \Omega, R_{2}=3 \Omega, R_{3}=6 \Omega, R_{4}=4 \Omega, R_{5}=4 \Omega, R_{6}=8 \Omega$, $L=20 \mathrm{mH}$, and $V_{s}=12 \mathrm{~V}$. The switch S is closed for a long time. At $t=0 \mathrm{~s}$, the switch S opens.
a) Calculate the voltage across the resistor R_{4} and the inductor current in steady-state while the switch S is closed.
b) What is the energy stored in the inductor at $t=0-\mathrm{s}$.
c) Calculate the time constant of the circuit when the switch is open;
d) Plot the current $I_{L}(t)$ from $t=-5 \mathrm{~ms}$ to $t=25 \mathrm{~ms}$;

Figure 3: Circuit diagram for Question 3

Question 4

In the circuit of Figure 4 assume the following: $L_{1}=160 \mathrm{mH}, L_{2}=80 \mathrm{mH}, R_{1}=5 \Omega$, $R_{2}=2 \Omega, C=20 \mathrm{mF}$, and $v_{s}(t)=\sqrt{2} 10 \cos (100 t) \mathrm{V}$. Assume that the circuit is in a steady-state operating condition. Calculate the following:
a) Impedances $\underline{Z_{L 1}}, \underline{Z_{L 2}}$, and $\underline{Z_{C}}$;
b) Voltage phasor $\underline{V_{1}}$;
c) Current phasor \underline{I}_{1};
d) Capacitor current in time-domain.

Figure 4: Circuit diagram for Question 4

Question 5

In the circuit of Figure 5, parameters are: $R_{1}=120 \Omega, R_{2}=13 \Omega, L_{1}=19 \mathrm{mH}, L_{2}=3 \mathrm{H}$, $C=220 \mathrm{pF}, V_{s 1}(t)=24 \cos (\omega t) \mathrm{V}$.
a) Determine the source frequency so that current $I_{1}(t)$ and voltage $V_{2}(t)$ are in phase.
b) What is the frequency of (a) called? Does any other frequency have the same property in the circuit of Figure 5?
c) For the frequency calculated under (a) calculate currents $I_{1}(t), I_{2}(t)$ and $I_{3}(t)$.
d) Calculate active and reactive power supplied by the source.

Figure 5: Circuit diagram for Question 5

Question 6

A diode bridge rectifier is used to provide a. DC current to a $50 \mathrm{k} \Omega$ resistive load. Rectifier will be supplied by an ideal $A C$ voltage source ($60 \mathrm{~Hz}, 20 \mathrm{~V}_{\mathrm{RMS}}$).
a) Draw the rectifier schematic diagram. Sketch the input voltage, the output voltage, the output current, and the current through each of the four rectifier diodes.
b) Find the peak and the average current in the load.
c) Sketch the input and the output voltage if the rectifier diode has on-state voltage drop of 0.5 V .
d) Using a 100Ω resistance, design an RC low-pass filter (for DC side) that can attenuate a 120 Hz sinusoidal voltage by 20 dB with respect to the DC gain.

Question 7

A logic platform controls a heating and air-conditioning system. It uses the following sensors for operation:
A) Time elapsed from the last compressor turn-off instant (1 if the minimal time is exceeded)
B) Over-temperature (1 if the ambient temperature is higher than $t_{H 1}$)
C) Under-temperature (1 if the ambient temperature is lower than t_{LO})
D) Heating function switch (1 if ON)
E) Cooling function switch (1 if ON)
F) Furnace over-temperature (1 if the furnace temperature is higher than $t_{\text {Furnace }}$)

The furnace should be turned on if the heating function switch is in the ON position and the ambient temperature is lower than the set value for heating $t_{\mathrm{L} O}$. The compressor should be turned on if the cooling function switch is in the ON position and the ambient temperature is higher than the set value for cooling t_{HI}. Once the compressor is turned off there is a minimum time delay before it is allowed to turn on again. The fan should be ON if the compressor is ON or if the furnace temperature is higher than $t_{\text {Furnace }}$.
a) Design the logic circuit that controls the furnace.
b) Design the logic circuit that controls the compressor.
c) Construct the truth table for controlling the fan.
d) Design the logic circuit that controls the fan.

Note:

Any gate type can be used to construct the logic circuits.

