NATIONAL EXAMINATIONS - December 2018

04-BS-10, Thermodynamics

3 Hours Duration

NOTES:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit, with the answer paper, a clear statement of any assumptions made.
2. Any one of the approved Casio or Sharp calculator models is permitted. This is a "Closed-Book" examination with one 8.5×11 inch sheet of notes (both sides) allowed.
3. Property tables and charts are provided where necessary. Interpolation is not necessary. The closest tabular value may be used.
4. Two questions from part " A " plus four questions from part " B " (a total of six questions) constitutes a complete paper. Unless clearly indicated otherwise by you, only the first two questions from part " A " and the first four questions from part "B" that you answered will be marked.
5. The mark associated with each question is specified.

PART A. DO ONLY TWO OF QUESTIONS 1, 2, or 3

(Each question is worth 20 marks)

1. Consider a regenerative vapor power cycle with two feedwater heaters, a closed one and an open one, as shown in the figure. Steam enters the first turbine stage at $12 \mathrm{MPa}, 480^{\circ} \mathrm{C}$, and expands to 2 MPa . Some steam is extracted at 2 MPa and fed to the closed feedwater heater. The remainder expands through the secondstage turbine to 0.3 MPa , where an additional amount is extracted and fed into the open feedwater heater operating at 0.3 MPa . The steam expanding through the third-stage turbine exits at the condenser pressure of 6 kPa . Feedwater leaves the closed heater at $210^{\circ} \mathrm{C}, 12 \mathrm{MPa}$, and condensate exiting as saturated liquid at 2 MPa is trapped into the open feedwater heater. Saturated liquid at 0.3 MPa leaves the open feedwater heater. Assume all pumps and turbine stages operate isentropically. Show the cycle on a T-s diagram with respect to saturation lines, and determine
(a) the rate of heat transfer to the working fluid passing through the steam generator, in kJ per kg of steam entering the first-stage turbine,
(b) the net power output, in kJ per kg of steam entering the first-stage turbine,
(c) the thermal efficiency of the cycle, and
(d) the second law efficiency of the cycle assuming a source temperature of 1000 K and a sink temperature of 288 K .

2. Air enters the compressor of a cold air-standard Brayton cycle with regeneration at $100 \mathrm{kPa}, 300 \mathrm{~K}$, with a mass flow rate of $6 \mathrm{~kg} / \mathrm{s}$. The compressor pressure ratio is 10 , and the turbine inlet temperature is 1400 K . The turbine and compressor each have isentropic efficiencies of 80% and the regenerator effectiveness is 80%. Sketch the cycle on a T-s diagram. For $k=1.4$, determine
(a) the thermal efficiency of the cycle,
(b) the back work ratio,
(c) the net power developed, in kW ,
(d) the rate of exergy destruction in the regenerator, turbine and compressor, in kW , for $\mathrm{T}_{0}=300 \mathrm{~K}$.
3. A vapor-compression refrigeration system with two evaporators using Refrigerant 134a as the working fluid is shown in the figure. The low-temperature evaporator operates at $-18^{\circ} \mathrm{C}$ with saturated vapor at its exit and has a refrigerating capacity of 3 tons. The higher-temperature evaporator produces saturated vapor at 320 kPa at its exit and has a refrigerating capacity of 2 tons. The compressor has an isentropic efficiency of 90% and the condenser pressure is 1 MPa . There are no significant pressure drops in the flow through the condenser and the two evaporators. The refrigerant leaves the condenser as saturated liquid at 1 MPa . Show the cycle on a T-s diagram with respect to saturation lines. Determine
(a) the mass flow rate of refrigerant through each evaporator, in $\mathrm{kg} / \mathrm{min}$
(b) the compressor power input, in kW ,
(c) the coefficient of performance (COP) of the cycle,
(d) the entropy increase in the compressor, in kW/K.
(1 ton $=211 \mathrm{~kJ} / \mathrm{min}$)

PART B. DO ONLY FOUR OF QUESTIONS 4, 5, 6, 7, 8 or 9
(Each question is worth 15 marks)
4. A mixture with a mass of 2 kg having a mass fraction of $70 \% \mathrm{~N}_{2}$ and $30 \% \mathrm{O}_{2}$ is compressed adiabatically from 100 kPa and $7^{\circ} \mathrm{C}$ to 500 kPa and $177^{\circ} \mathrm{C}$, Determine
a. the work input in kJ , and
b. the amount of entropy produced in kJ / K
5. Moist air at $25^{\circ} \mathrm{C}, 105 \mathrm{kPa}, 85 \%$ relative humidity and a volumetric flow rate of $0.3 \mathrm{~m}^{3} / \mathrm{s}$ enters a well-insulated compressor operating at steady state. If moist air exits at $97^{\circ} \mathrm{C}$ and 200 kPa , determine
(a) the relative humidity at the compressor exit, and
(b) the power input to the compressor in kW .

Hint: ω inlet $=\omega$ exit
6. Air is contained in a rigid well-insulated tank with a volume of $0.2 \mathrm{~m}^{3}$. The tank is fitted with a paddle wheel that transfers energy to the air at a constant rate of 4 W for 20 min . The initial density of the air is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$. If no changes in kinetic or potential energy occur, determine
(a) the specific volume at the final state, in $\mathrm{m}^{3} / \mathrm{kg}$,
(b) the change in specific internal energy of the air, in $\mathrm{kJ} / \mathrm{kg}$.
7. A piston-cylinder assembly contains 5 kg of two-phase liquid-vapor mixture of $\mathrm{H}_{2} \mathrm{O}$ initially at 500 kPa with a quality of 98%. Expansion occurs to a state where the pressure is 150 kPa . During the process the pressure and specific volume are related by $p v=$ constant. Determine
(a) the work, in kJ , and
(b) the heat transfer, in kJ .
8. Air expands at a mass flow rate of $10 \mathrm{~kg} / \mathrm{s}$ through a turbine from $500 \mathrm{kPa}, 900 \mathrm{~K}$ to $100 \mathrm{kPa}, 600 \mathrm{~K}$. The inlet velocity is small compared to the exit velocity of 100 m / s. The turbine operates at steady state. Heat transfer from the turbine to the surroundings and potential energy effects are negligible. Calculate
(a) the power developed by the turbine, in kW , and
(b) the turbine exit area, in m^{2}.
9. $\quad 1.5 \mathrm{~kg}$ of air (Assume ideal gas behavior) executes a Carnot power cycle having a thermal efficiency of 50%. The heat transfer to the air during the isothermal expansion is 40 kJ . At the beginning of the isothermal expansion, the pressure is 700 kPa and the volume is $0.12 \mathrm{~m}^{3}$. Sketch the cycle on $p-v$ diagram and determine
(a) the maximum and minimum temperatures for the cycle, in K ,
(b) the volume at the end of the isothermal expansion, in m^{3}, and
(c) the work and heat transfer for each of the four processes, in kJ .

APPENDIX - TABLES AND CHART

TABLE A-1 Molar Mass, Gas Constant, and Critical-Point Properties 2
TABLE A-4 Properties of Saturated Water: Temperature Table 3
TABLE A-5 Properties of Saturated Water: Pressure Table 5
TABLE A-6 Properties of Superheated Water 7
TABLE A-7 Properties of Compressed Liquid Water 11
TABLE A-11 Properties of Saturated Refrigerant -34a: Temperature Table 12
TABLE A-12 Properties of saturated Refrigerant-134a: Pressure Table 13 13
TABLEE A-13 Properties of Superheated Refrigerant-134a 14
TABLE A-14 Ideal Gas Specific Heats of Some Common Gases 16
TABLE A-17 Ideal Gas Properties of Nitrogen 17
TABLE A-18 Ideal Gas Properties of Oxygen 18
TABLE A-19 Ideal Gas Properties of Water Vapor 19
TABLE A-22 Ideal Gas Properties of Air 20
CHART Psychrometric Chart for 1 atm 22

TABLE A. 1

	a	Molar mass $\mathrm{kg} / \mathrm{kmol}$	$\begin{aligned} & R \\ & \mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{~K})^{*} \end{aligned}$	Temperature K	Pressure MPa	Valume $\mathrm{mi}^{3} / \mathrm{kmal}$
Substance	Forma	17.03	0.4882	405.5	11.28	0.0724
Ammonia	NH_{3}	17.03	0.2081	151	4.86	0.0749
Argon	Ar	39.948	0.0520	584	10.34	0.1355
Bromine	Br_{2}	159.808	0.0520	304.2	7.39	0.0943
Carbon dioxide	CO_{2}	44.01	0.1889 0.2968	133	3.50	0.0930
Carbon monoxide	CO	28.011	0.1173	-417	7.71	0.1242
Chlorine	Cl_{2}	70.906	20785	38.4	1.66	-
Deuterium (normal)	D_{2}	4.00	2.0785	5.3	0.23	0.0578
Helium	He	4.003	4.0769	33.3	1.30	0.0649
Hydragen (normal)	H_{2}	2.016	0.09921	209.4	5.50	0.0924
Kryplon	Kr	83.80	0.4119	44.5	2.73	0.0417
Neon	Ne	20.183	0.2968 .	126.2	3.39	0.0859
Nilrogen	N_{2}	28.013	0.1889	309.7	7.27	0.0961
Nitrous oxide	$\mathrm{N}_{2} \mathrm{O}$	44.013	0.1889 0.2598	154.8	5.08	0.0780
Oxygen	O_{2}	31.999	0.1298	430.7	7.88	0.1217
Sulfur dioxide	SO_{2}	64.063 18.015	0.4615	647.3	22.09	0.0568
Water	$\mathrm{H}_{2} \mathrm{O}$	18.015	0.06332	289.8	5.88	0.1186
Xenon	Xe	131.30	0.1064	562	4.92	0.2603
Benzene	$\mathrm{C}_{6} \mathrm{H}_{\mathrm{a}}$	78.115	0.1430	425.2	3.80	0.2547
n-Butane	$\mathrm{Ca}_{4} \mathrm{H}_{10}$ -	58.124	0.05405	556.4	4.56	0.2759
Carbon letrachlorlde	CCl_{4}	153.82 119.38	0.05405	536.6	5.47	0.2403
Chlorolorm	CHCl_{3}	119.38	0.06876	384.7	4.01	0.2179
Dichlorodifluoromethane (R-12)	$\mathrm{CCl}_{2} \mathrm{~F}_{2}$	120.91 102.92	0.08078	451.7	5.17	0.1973
Dichlorolluoromethane	$\mathrm{CHCl}_{2} \mathrm{~F}$	102.92 30.070	0.2765	305.5	4.88	0.1480
Ethane	$\mathrm{C}_{2} \mathrm{H}_{5}$	30.070	0.1805	516	6.38	0.1673
Elhyl alcotiol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	46.07 28.054	0.2964	282.4	5.12	0.1242
Elhyleñe	$\mathrm{C}_{2} \mathrm{H}_{4}$	28.054 86.178	0.09647	507.9	3.03	0.3677
n-Hexane	$\mathrm{C}_{6} \mathrm{H}_{14}$	86.178	0.5182	191.1	4.64	0.0993
Methane	CH_{4}.	16.043 32.042	0.51895	513.2	7.95	0.1180
Methyl alcohol	$\mathrm{CH}_{3} \mathrm{OH}$	32.042	0.1647	416.3	6.68	0.1430
Methyl chloride	$\mathrm{CH}_{3} \mathrm{Cl}$	50.488	0.1885	370	4.26	0.1998
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	44.097	0.1976	365	4.62	0.1810
Propene	$\mathrm{C}_{3} \mathrm{H}_{6}$	065	0.2075	401	5.35	:-
Propyne	$\mathrm{C}_{3} \mathrm{H}_{4}$	${ }_{137} 40.065$	0.06052	471.2	4.38	0.2478
Trichloroflucromelhane	$\mathrm{CCl}_{3} \mathrm{~F}$	137.37	0.06870	-:	-	-
Alr	-	28.97	0.2870	-		

The unil $\mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K})$ is equivalent to $\mathrm{kPa} \cdot \mathrm{m}^{3} /(\mathrm{kg} \cdot \mathrm{K})$. The gas conslant is calculated from $R=R_{u} / \mathrm{M}$, where $R_{u}=8.314 \mathrm{~kJ} /(\mathrm{kmol} \cdot \mathrm{k})$ and M is the molar mass.
Sourca-Gordon J. Van Wylen and Richard E. Sonntag. Fundamentals of Classical Themodynamics, English/Si Verslon, 3d ed., Wley,
 Now
1953.

TABLE A-4

Sounco: Tables A-4 through A-8 are adapted from Gordon J. Van Wylen and Richard E. Sorintag. Findamantals of Classical Thermiodynimilces, Englist/Si. Verslon, 3rd ed. (New York: Jotin Wiley \& Sons, Is Units (New York: Johin. Wiay \& Sonis, 1978).
Keenan, Frederlck G. Koyos, Phillp G. Hill, and Joan G. Mooro, Sleam Tables, St Units' (New

TABLEA.5

Saturated water-Pressure table				Internal energy, $\mathrm{kJ} / \mathrm{kg}$			Enthalpy, $\mathrm{kJ} / \mathrm{kg}$			$\begin{aligned} & \text { Entropy, } \\ & \mathrm{k} J /(\mathrm{kg} \cdot \mathrm{~K}) \end{aligned}$		
\%												sat.
-20 ${ }^{0}$	Sat. tomp.	Sat. liquid,	Sat. vapor,	Sat.	Evap.4	vapor,	Sat. liquid, h_{1}	Evap. 1 In	sxpor, \%	Sat. IIquid, s,	Evap.ı s_{0}	s_{j}
SE: PKPX	$T_{s a t}{ }^{\text {c }}$ -	v_{1}	\boldsymbol{r}_{6}.	tlquid, u_{1}	U_{4}	u_{0}		$\frac{140}{2501.3}$	2501.4	0.0000	9.1562	9.1662
-8is 0.6113	0.01	0,001000	206.14	. 0.00	2375.3	2375.3		2484.9	2514.2	0.1059	8.8697	8.9758
1.0	6.98	0.001000	128.21*	29.30	2355.7	2393.3	54.71	2470.6	2525.3	0.1957	8.6322	6.8279
1.5	13.03	0.001001	87.98			2399.5	73.48	2460.0	2533.5	0.2607	8.4629	. 62437
2.0	17.50	0.001001	67.00	73.48		2404.4	88.49	2451.6	2540.0	0.3120	8.3311	. 6436
2.5	21.08	0.001002	54.25	88.48	7.5	2408.5	101.05	2444.5	2545.5	0.3545	8.2231	8. 4746
3.0	24.08	0.001003	45.67	101.04	93.7	2415.2	121.46	2432.9	2554.4	0.4226	8.0520	. 3951
4.0	28.86	0.001004	34.80	121.45	27	2420.5	137.82	2423.7	2561.5.	0.4764	7.9187	2515
5.0	32.06	0.001005	28.19	13	1.7	2430.5	168.79	2406.0	2574.8	0.6764	7.6750	2
7.5	40,29	0.001008	9.24	8,78	6.1	2437.9	191.83	2392B	2584,7	0.453	?	5
10	45.81	0.001010	14.67	191.8	28	2448.7	225.94	2373.1	2599.1	0.7549	7.2536	. 80005
15	53.97	0.001014	10	225.92	5.4	2456.7	251.40	2358.3	2609.7	0.8320	7.0766	7.8314
20	60.06	0.001017	7.649	2	2191.2	2463.1	271.93	2346.3	2618.2	0.8931	6.9363	7.7686
25	64.97	0.001020	6.204		2179.2	2468.4	289.23	2336.1	2625.3	0.8479	1	7.6700
30	69.10	0.00	5.229		2159.5	2477.0	317.58	2319.2	2636.8	1.0259		7.6939
40	75.87	0.0010	3.993		2143.4	2483.9	340.49	2305.4	2645.9	1.09130	6.2434	7.4584
50	81.33	0.001030	2217	384.31	2112.4	2496.7	384.39	2278.6	2663.0	1.2130		
75	91.78	0.001037	2217									
Pross.y										1.3026	6,0568	1:2594
MPA .	*			417.36	2088.7	2506.1	417.46	2258.0	2685.4	1.3740	5.9104	7.2844
0.100.	89.63	0,001043 0.001048	1.6940	444.19	2069.3	2513.5	444.32 467.11	2241.0	2685.4	1.3743 1.4336	6.7897	72013
0.125	105.99 11.4	0.001048 0.001053	1.3749 1.1593	466.94	20527	2510.7	467.11	2226.6	2700.6	1.4849	6,6868	7.1717
0.150	114.37	0.001053 0.001057	1.1 .0036	486.80	2038.1	2524.9	488.99	2213.6	2706.7	1.5301	5.5970	7.1271
0.175	118.06	0.001057 0.001061	0.8857	504.49	2025.0	2529.6	60A.70	2201.8		1.6706	5.5173	7.0078
0.200	120:23	0.001061 0.001084	0.8857 0.7833	620.47	2013.1	2533.6	520.72	2181.3	2716.8	1.6072	5.4455	7.0527
0.225	- 124500	0.001064	0.7187	535.10	20021	2537.2	635.37	2181.5	2721.3	1.6408	6.3801	-7.0209
0.250	127.44	0.001067 0.001070	0.6573	64E.59	1901.8	2540.5	648.89	21724		. 1.6716	5.3201	6.9919
0.275	130.60	0.001070	0.6573	561.15	-1982.4	2543.6	561.47	2163.8	2725.3	1.7006	5.2646	6.9652
0.300	. 133.65	. 0.001073	0.6058	672.90	1973.6	2546.4	673.25	2155.8	. 0	1.7006	5.2130	6.9405
0.325	136.30	0.001076	0.5620 0.5243	683.95	1965.0	2548.9	581.33	2158.1.	2732.4	1.7528	6.4647	6.9176
0.250	138.88	0.001079	0.5243	694.40	1956.9	2551.3	E94:81	2140.8	2735.6	1.7766	5.1193	6,8959
0.375	141.32	0.001081.	0.4914	604.31	1949.3	2553.6	604.74	2133.8	2738.6	1.8207	5.0359	6.8565 .
0.40	143.63	0.001084	0.4625 0.4140	622.77	1934.9	2557.6	623.26	2120.7	2743.9	1.8607	4.0606	6.8213
0.45	147.03	0.001088	0.4140	639.68	1821.6	2561.2	640.23	2108.5	2748.7	1.8607	4.8920	6.7693
0.50	151.86	0.001093	- 0.3749	655.32	1809.2	2564.5	665.93	2097.0	2753.0	1.8973	4.8288	6.7600
0.65	155.48	0.001097	0.3427	669.80	1897.5	2567.4	670.50	2086.3	2756.8	1.8312	4.7703	6.7331
0.60	158.85	0.001101	0.	683.66	1886.5	2570.1	684.28	2076.0	2760.3	1.89822	4.7158	6.7000
0.65	16201	0.001104	0.2	696.44	1876.1	2572.5	697.22	2066.3	2763.5	1.8922	4.6647	6.6847
0.70	164.87	0,001.108	0.2729	708.64	1866.1	2574.7	709.47	2057.0	2766.4	2.0462	4.6168	0.6630
0.75	167.78	0.001112		720.22	1856.6	2576.6	721.11	2048.0	2769.1	2.0710	4.6711	6.6421
0.60	170.43	0.001116	0.2	731.27	1847.4	2578.7	732.22	2039.4	2771.6	2.0946	4.5280	6.6226
0.85	172.86	0.001118		741.83	1838.6	2580.5	742.83	2031.1		2.1172	4.4669	6.6041
0.90	175.36	0.001121	0.2150		1830.2	25821	753.02	2023.1	2776.1		4.4478	6.5865
0.95	177.69	0.001124	0.2402	761.68	1822.0	2583.6	76281	2015.3	2778.1	2.387	4.3744	$6.5536{ }_{1}$
1.00	178.91	0.001127	0.19444	780.09	1806.3	2586.4	781.34	2000.4	2871.7	2	4.3067	6.5233.
1.10	184.09	0.001133	0.17763	780.09	1791.5	2588.8	788.65	1986.2	2784.8	22160	4.2438	6.4853°
1.20	187.99	0.001139	0.16333		1777.5	2591.0	B14.83	1972.7	2787.6	22515		

TABLEA-5

$\frac{\text { Saturated water-Pressure table (Concl }}{\text { Specific volume, }}$				Internal energy, $\mathrm{kJ} / \mathrm{kg}$			Entitialipy,$\mathrm{k} J / \mathrm{kg}$			$\begin{aligned} & \text { Entropy, } \\ & \mathrm{kd} /(\mathrm{kg} \cdot \mathrm{~K}) \end{aligned}$			
Pressas PMPa	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{C}$	Sat. liquid, v_{1}	Sat. vapor, v_{j}	Sat. liquid, u_{f}	Evap.s U_{p}^{\prime}.	Sat. vapor, u_{p}	Sat. liquid, h_{f}	Euap., $h_{\text {lq }}$	Sat. vapor h_{0}	Sat. Ilquid, s_{f}	Evap., s_{10} 41850	Sat. vapor, s_{0}	
	195.07	0.001149	0.14084	828.70	1764.1	2592.8	830.30	1957.7	2790.0	2.2842	4.1850	6.4448	
1.50	198.32	0.001154	0.13177	843.16	1751.3	2594.5	844.89	1947.3	2792.2	23150	4.1298 4.0044	6.4448 6.3896	
1.75	205.76	0.001166	0.11349	876.46	1721.4	259	878.50	18	2799.5	24474	3.8935	6,3409	
2.00	212.42	0.001177	0.09963	906.44	1693.8	2600	936.49	1865	2801.7	2.5035	3.7937	6.2972	
2.25	218.45	0.001.187	0.08875	933.83	1668.2	2603	962.11	1841.0	2803.1	2.5547	3.7028	6.2575	
2.5	223.99	0.001197	0.07998	959.11	1644.0	2604.1	1008.42	1795.7	2804.2	2.6457	3.5412	6.1869	
3.0	233.90	0.001217	0.06668	1004.78		2603.7	1049.75	1753.7	2803.4	2.7253	3.4000	6.1253	
3.5	242.60	0.001235	0.05707	1045.43		2602.3	1087.3i	1744.1	2801.4	27.664	3.2737	6.0701	
4	250.40	0.001252	0.04978	1082.31		2597.1	1154.23	1640.1	2794.3	2.9202	3.0532	5.9734	
5	263.99	0.001286	0.03944	1147.81		2589.7	1213.35	1571.0	2784.3	3.0267	2.8625	5.8892	
6	275.64	0.001319	0.03244	1205		2580.5	1267.00	1505.1	27721	3.1211	2.6922	5.8133	
7	285.88	0.001351	0.02737	1257.55	1323.0	2569.8	1316.64	1441.3	2758.0	3.2068	2.5364	5.7432	
8	295.06	0.001384	0.02352	1305.57	1	2557.8	1363.26	1378.9	2742.1	3.2858	23915	5.6722	
9	303.40	0.001418	0.02048	1350.51	1151.4	2544.4	1407.56	1317.1	2724.7	3.3596	2.2544	5.6141	
10	311.06	0.001452	0.01802		1096.0	2529.8	1450.1	1255.5	2705.6	3.4295	21293	5.5527	
11	318.15	0.001489	0.015987	1439.7	1040.7	2513.7	1491.3	1193.3	2684.9	3.4962	1.9962	5.4924	
12	324.75	0.001527	0.014263	1473.0	985.0	2496.1	1531.5	1130.7	2662.2	3.5606	1.8718	5.4323	
13	330.93	0.001567	0.012780			2476	1571.1	1066.5	2637.6	3.6232	1.7485	5.3717	
14	336.75	0.001611	0.011485	1548.6	928.2		1610.5	1000.0	2810.5	3.6848	1.6249	5.3098	
15	342.24	0.001658	0.010337	1585.6		7	-1650.1	930.6	2580.6	3.7461	1.4994	5.2455	
16	347.44	0.001711	. 0093				1690.3	856.9	2547.2	3.8078	1.3698	5.1777	
17	- 352.37	0.001770	0.008364	1660.2	744.8	2374.3	17320	777.1	2509.1	3.8715	.1.2329	5:1044	
18	357.06	0.001840	0.007489	1698.9	67.4	2338.1	1776.5	688.0	2464.5	3.9388	1.0839	5.0228	
19	361.54	0.001924	0.006657	1739.9	5075		1826.3	583.4	2409.7	4.0139	0.8130	4.9269	
20	365.81	0.002036	0.005834	1785.6	07	2230.6	1888.4	446.2	2334.6	4.1075	0.6938	4.8013	
21	369.89	0.002207	0.004952	1842.1	125.2	2087.1	2022.2	143.4	2165.6	4.3110	0.2216	4.5327	
22	373.80	0.002742	0.003568	1020.		2029.6	2099.3	0	2099.3	4.4298	0	4.4298	
22.09	374.14	0.003155	0.003155	2029.6	0								

The temperature in parontheses is the sat uration tpmperature at the specitiod pressure.
tpropertles of saturatod vapor at the speclined pressuro.
908

TABLE A-G
Superheated water (Continued)

TABLEA-6

Superhented water (Continuted)

TABLE A-G

Supierhicated water (Conclualled)												$\stackrel{s}{5} \mathrm{~J}(\mathrm{~kg} \cdot \mathrm{~K})$
$\overline{{ }_{-C}}$	m^{2} / kg	$\begin{aligned} & u \\ & \mathbf{k} J / \mathrm{kg} \end{aligned}$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{k} / \mathrm{J} / \mathrm{kg} \end{aligned}$	$\stackrel{\mathrm{k}}{\mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{Kl}}$	${ }^{V}{ }^{\text {m }} / \mathrm{kg}$	kJIfkg	kJ/kg	kJ/ $/ \mathrm{kg} \cdot \mathrm{K}$)	$\mathrm{m}^{3} / \mathrm{kg}$	kJ/kg		
	$P=15.0 \mathrm{MPa}\left(342.24^{\circ} \mathrm{C}\right]$				$P=17.5 \mathrm{MPa}\left(354.75^{\circ} \mathrm{C}\right)$				$P=20.0 \mathrm{MPa}\left(365.81^{\circ} \mathrm{C}\right)$			
					0.007920	2390.2	2528.8	5.1419	0.005834	2293.0	2409.7	4.9269
Sat.	0.010337	2455.5	2610.5	5.3098	0.007920							
350	0.011470	2520.4	2692.4		001244	2685.0	2902.9	5.7213	0.009942	2619.3	2818.1	5.5540
400	0.015649	2740.7	2975.5	5.8811	0.012447	2844.2	3109.7	6.0184	0.012695	2808.2	3050.1	5.9017
450	0.018445	2879.5	3156.2	6.1404	0.	2970.3	3274.1	6.2383	0.014768	2942.9	3238.2	6.1401
500	0.02080	2996.6	3308.6	6.3		3083.9	3421.4	6.4230	0.016555	3062.4	3393.5	6.3348
550	0.02293	3104.7	3448.6	6.5	0.01928	31915	3560.1	6.5866	0.018178	3174.0	3537.6	6.5048
600	0.02491	3208.6	35823	6.6776	0.02106	3296.0	3693.9	6.7357	0.019693	3281.4	3675.3	6.6582
650	0.02680	3310.3	3712.3	6.8224	0.02274	3398.7	3824.6	6.8736 :	0.02113	3386.4	3809.0	6.7993 -
700	0.02861	3410.9	3840.1	6.9572	0.02434	3368.8	4081.1	7.1244	0.02385	3592.7	4069.7	7.0544
800	0.03210	3610.9	40924	7.2040	0.02738	3808.7	4335.1	7.3507	0.02645	3797.5	4326.4 ${ }^{\text { }}$	7.2830
900	0.03546	3811.9	4343.8	7.4279	0.03031	4804.7	4589.5	7.5589	0.02897	4003.1	4582.5	7.4925
1000	0.03875	4015.4	4596.6	7.6348	0.03316	4016.9	4846.4	7.7531	0.03145	4211.3	4840.2	7.6874
1100	0.04200	4222.6	4852.6	7.8283	0.03597	4216.9	5106.6	7.9360	0.03391	1422.8	5101.0	7.8707
1200	0.04523	4432.8	5112.3	g.010e	0.03 L 76	4643.6	6370.5	8.1093	0.03638	4638.0	5365.1	8.0442
1300	0.04845	4649.1	5376.0	8.1840	P=30.0 ${ }^{\text {a Pa }}$				Pa 35.0 MPa			
	$P=25.0 \mathrm{MPP}$					P=	, ${ }^{\text {NPa }}$				17624	3.8722
375	0.0019731	1788.7	1848.0	4.0320	0.0017892	1737.0	1791.5	3.8305 4.4720	0.0017003100	1914.1	1987.6	4.2126
400	0.006004	2430.1	2580.2	5.1418	0.002790	2067.4	2	5.1604	0.003428	2253.4	2373.4	4.7747
425	0.007881	2609.2	2806.3	5.4723	0.00530	2455.1	28	5.4424	0.004961	2498.7	2672.4	6.1962
450	0.009162	2720.7	2949.7	5.6744	0.0067	20	30	5.7905	0.006927	2751.9	2994.4	5.6282
500	0.011123	2884.3	3162.4	5.9592	0.0086		3275.4	6.0342	0.008345	2921.0	3213.0	5.9020
550	0.012724	3017.5	3335.6	6.1765	0.0101	5	3443.9	6.2331	0.009527	30020	3395.5	6.1179
600	0.014137	3137.9	3491.4	6.3602	0.0114	3221.0	3598.8	6.4058	0.010576	3169.8	3559.9	-6.3010
650	0.015433	3251.0	3637.4	6.6229	0.01259	3735.8	3745.8	6.5606	0.011533	3309.8	3713.5	6.4631
700	0.016646	3361.3	3777.5	6.6	0.01366	3555.5	4024,2	6.8332	0.013278	3530.7	4001.5	6.7450
800	0.018912	3574.3	4047.1	6.9345	0.01562	3788.5	4201.9	7.0718	0.014883	3754,0	4274.8	6.9386
900	0.021045	3783.0	4309.1	7.1680	0.01744	3978.	4554.7 .	7.2867	0.018410	3966.7	4541.1	7.2004
1000	0.02310	3990.9	4568.5	7.3802	0:01919	4189.2	4816.9	7.4045	0.017895	4178.3	4804.6	7.4037.
1100	0.02512	4200.2	4828.2	7.5765	0.0209	4401.3	5079.0	7:6692	0.018360	. 4390.7	5068.3	- 7.5910
1200	0.02711	4412.0 :	5089.9	7.7	. 2258	4616.0	6344.0	7.6432	0.020815	4605.1	6333.6	7.7653
1300	0.02910	4626.9	6354.4	7.934	$P=50.0 \mathrm{MPa}$				$P_{\text {mag }} 0.0 \mathrm{MPa}$			
	$P=40.0$ RPPa					P=	, MPa				1699.5	3.7141
375	0.0016407	1677.1	1742.8	3.8290	0.0015594	1638.6	1716.6	3.7639 4.0031	0.0015028	1745.4	1843.4	3.9318
400	0.0019077	1854.6	1930.9	4.1135	0.0017309	1788.1	1874.6	4.2734	0.0018165	1892.7	2001.7	4.1626
425	0.002532	2096.9	2188.1	4.5029	0.002007	1859.7	2284	4.5884	0.002085	2053.9	2179.0	4.4121
450	0.003693	2365.1	25120	4.9459	0.002486	2159.6		5.1726	0.002956	2390.6	2567.9	4.9321
600	0.005622	2678.4	2903.3	5.4700	0.003892	5.	3019.6	5.5465	0.003958	2658.8	2896.2	5.9441
550	0.006984	2869.7	3149.1	6.7785	0.005118	2763.6	3247.6	6.8178	0.004934	2861.1	31512	5.6452
600	0.008094	3022.6	3346.4	6.0144	0.006112	29433.5	3441.8	6.0342	0.005595	3028.8	3364.5	5.8829
650	0.009063	3158.0	3520.6	6.2054	0.00696	3230.5	3816.8	0.2189	0.006272	3171.2	'3553. 5	0.0824
700	0.009941	3283.6	3681.2	6.3750	0.00772	3479.8	3933.8	6.6290	0.007459	3441.5	3869.1	6.4109
800	0.011523	3517.8	3978.7	0.6682	0.00907	3710.3	4224.4	0.7882	0.008508	3681.0	4191.5	6.6805
900	0.012962	3739.4	4257.9	6.9150	0.01028	3930.5	4501.1	7.0146	0.009480	3900.4	4475.2	6.9127
1000	0.014324	3954.6	4527.6	7.1356	0.011411	4145.7	4770.5	7,2184	0.010409	4124.1	4746.6	7.1195
100	0.015642	4167.4	4793.1	7.3364	0.012436	4185.7	60372	7.4058	0.011317	4388.2	5017.2	7.3093
1200	0.016940	4380.1	5057.7	7.5224	0.013561		5303.6	7.5808	0.012215	4551.4	5284.3	7.4837
1300	0.018229	4594.3	5323.5	7.6969	0.014616	4572						

TABLE A-T.
Compiressed liquid water

TABLEA-11

$\begin{aligned} & \text { Tomp., } \\ & T^{*} \mathrm{C} \end{aligned}$	Press., $P_{s a l}$ MPa	Specific volume, $\mathrm{m}^{3} / \mathrm{kg}$		$\begin{gathered} \text { Internal } \\ \text { energy, } \mathrm{kJ} / \mathrm{kg} \end{gathered}$		$\begin{aligned} & \text { Enthalpy } \\ & \mathrm{kJ} / \mathrm{kg} \end{aligned}$			$\begin{aligned} & \text { Entrop } y_{\mathrm{s}} \\ & \mathrm{KJ} /(\mathrm{kg} \cdot \mathrm{~K}) \\ & \hline \end{aligned}$	
		Sat. IIquid, v,	Sat. vapor, v_{0}.	Sat. liquid, u_{f}	Sat. vapor, u_{g}	Sat. liquid, h	Evap., $h_{\text {lg }}$	Sat. vapor, b_{g}	Sat. liquid S_{1}	Sat. vapor, s_{p}
						0.00	222.88	222.88	0.0000	0.9560
-40	0.05164	0.0007055	0.3569	-0.04	204.45	4.73	220.67	225.40	0.0201	0.9506
-36	0.06332	0.0007113	0.2947	4.68	209.01	9.52	218.37	227.90	0.0401	0.9456
-32	0.07704	0.0007172	0.2451	9.47	211.29	14.37	216.01	230.38	0.0600	0.9411
-28	0.09305	0.0007233	0.2052	14.31	211.29 212.43	16.82	214.80	231.62	0.0699	0.9390
-26	0.10199	0.0007265	0.1882	16.75			213.57	232.85	0.0798	0.9370
-24	0.11160	0.0007296	0.1728	19.21		19.29 21.77	212.32	234.08	0.0897	0.9351
-22	0.12192	0.0007328	0.1590	21.68	215.84	24.26	211.05	235.31	0.0996	0.9332
-20	0.13299	0.0007361	0.1464	24.17	216.97	26.77	209.76	236.53	0.1094	0.9315
-18	0.14483	0.0007395	0.1350	26.67	216.97 218.10	29.30	208.45	237.74	0.1192	0.9298
-16	0.15748	0.0007428	0.1247	29.18			205.77	240.15	0.1388	0.9267
-12	0.18540	0.0007498	0.1068	34.25	22	34.54	203.00	242.54	0.1583	0.9239
-8	0.21704	0.0007569	0.0919	39.38	222.60	44.75	200.15	244.90	0.1777	0.9213
-4	0.25274	0.0007644	0.0794	44.56	224.84 227.06	50.02	197.21	247.23	0.1970	0.9190
0	0.29282	0.0007721	0.0689	49.79	227.06 229.27	55.35	194.19	249.53	0.2162	0.9169
4	0.33765	0.0007801	0.0600	55.08	229.	60.73	191.07	251.80	0.2354	0.9150
8.	0.38756	0.0007884	0.0525	60.43		$\begin{aligned} & 60.13 \\ & 66.18 \end{aligned}$	187.85 =	254.03	0.2545	0.9132
12	0.44294	0.0007971	0.0460	65.83	235.78	71.69	184.52	256.22	0.2735	0.9116
16	0.50416	0.0008062.	0.0405	71.29	235.781	77.26	181.09	258.35	0.2924	0.9102
20	0.57160	$0.0008157{ }^{\circ}$	0.0358	8237	240.01	77.2	177.55	260.45	0.3113	0.9088
24	0.64566	0.0008257	0.0317	82.37	240.01			261.48	0.3208	0.9082
26	0.68530	0:0008309	0.0298	85.18	241.05	88:61	173.89	262.50	0.3302	0.9076
28	0.72675	0.0008362	0.0281	88.00	242.08	81.49	172.00	263.50	0.3396	0.9070
30	0.77006	0.0008417	0.0265	84	243.10	94.39 .	170.09	264.48	0.3490	0.9064
32	0.81528	0.0008473	0.0250	93.70	244.12	97.31	168.14	265.45	0.3584	0.9058
34	0.86247	0.0008530	0.0236	96.58					0.3678	0,9053
36	0.91168	. 0.0008590	0.0223	99.47	246.11	103.21	164.12	267.33	0.3772	0.9047
38	0.96298	0.0008651	0.0210	102.38		106.19	162.05	268.24	0.3886	0.9041
40	1.0164	0.0008714	0.0199	105.30	249.02	109.19	159.94	269.14	0.3960	0.9035
42	1.0720	0.0008780	0.0188	108	24	112.22	157.79	270.01	0.4054	0.9030
44	1.1299	0.0008847	0.0177	111.22				88	0.4243	0.9017
48	1.2526	0.0008989	0.0159	117.22	251.79		148.66	273.24	0.4432	0.9004
52	1.3851	0.0009142	0.0142	23		$\cdot 13$	143.75	274.68	0.4622	0.8990
56	1.5278	0.0009308	0.0127	129.51	255.23	137.42	138.57	275.99	0.4814	0.8973
60	1.6813	0.0009488	0.0114	135:82				43	0.5302	0.8918
70	21162	0.0010027	0.0086	152.22	26	$154 .$	106.41	279.12	0.5814	0.8827
80	2.6324	0.0010766	0.0064	169.88	26.14	193.69	82.63	276.32	0.6380	0.8655
90	3.2435	0.0011949	0.0046,	189.8	261.34	153.69	34.40	259.13	0.7196	0.8117
100	3.9742	0.0015443	0.0027	21	248.4					

. Source for Tables A-8 through A-10: M. J. Moran and H. N. Shapiro, FU irom D. P. Wilson and R. S. Basu, "Thiermödynamle Properities ol a John Willey \& Sons, 1992), pp, 710-15. Orighany basodi Now Stratospherlcally Sale Wöking Fluld- Relfigerant-134a," ASHRA 916

Salurated refrigerant-134a_Pressure table Spocifle volume, $\mathrm{m}^{3} / \mathrm{kg}$				$\begin{aligned} & \text { Internal } \\ & \text { energy, } \mathrm{k} / \mathrm{kg} \end{aligned}$		Enthalpy: $\mathrm{kJ} / \mathrm{kg}$			$\begin{aligned} & \text { Entropy, } \\ & \mathrm{KJ}(\mathrm{~kg} \cdot \mathrm{~K}) \end{aligned}$			
						Sat.	Sat.					
	Temp.,	Sat. Ilquid,	Sat. vapor,			Sat. liquid,	vapor,	liquid, h_{1}	Evap., $h_{\text {f }}$	vapor, h_{0}	$\begin{aligned} & \text { liquid } \\ & s_{f} \end{aligned}$	$\begin{aligned} & \text { vapor } \\ & s_{0} \\ & \hline \end{aligned}$
Press.g PMPa	$T_{\text {cat }}{ }^{\circ} \mathrm{C}$	v_{f}	v_{0}	u_{1}		$h_{\text {f }} 3.46$	221.27	224.72	0.0147	0.9520		
0.06	-37.07	. 0.0007097	0.3100	3.41	206.12	10.47	217.92	228.39	0.0440	0.9447		
0.08	-31.21	0.0007184	0.2366	10.41	212.18	16.29	215.06	231.35	0.0678	0.9395		
0.10	-26.43	0.0007258	0.1917	16.22	-	21.32	212.54	233.86	0.0879	5		
0.12	-22.36	- 0.0007323	0.1614	21.23	216.52	25.71	210.27	$236.04{ }^{\prime}$	0.1055	0.9322		
0.14	-18.80	0.0007381	0.1395	25.66		29.78	208.18	237.97	0.1211	0,9295		
0.16	-15.62	0.0007435	0.1223	29.66	21	33.45	206.26	239.71	0.1352	0.9273		
0.18	-12.73	0.0007485	0.1098	33.31	21.94	36.84	204.46	241.30	0.1481	0.9253		
0.20	-10.09	0.0007532	0.0993	36.69	224.07	42.95	201.14	244.09	0.1710	0.9222		
0.24	-5.37	0.0007618	. 083	2.77	226.38	48.39	198.13	246.52	0.1911	0.9197		
0.28	-1.23	0.0007697	0.0719	48.18	226.38	53.31	195.35	248.66	0.2089	0.9177		
0.32	2.48	0.0007770	0.0632	53		57.82	192.76	250.58	0.2251	0.9160		
0.36	5.84	0.0007839	0.0564	57.54	231.97	62.00	190.32	252.32	0.2399	0.9145		
0.4	8.93	0.0007904	0.0509	61.69	235.64	71.33	184.74	256.07	0.2723	0.9117		
0.5	15.74	0.0008056	0.0409	70.93	238.74	79.48	179.71	259.19	0.2999	0.9097		
0.6	21.58	0.0008196	0.0341	78.99		86.78	175.07	261.85	0.3242	0.9080		
0.7	26.72	0.0008328	0.0292	86.19	243.78	93.42	170.73	264.15	0.3459	0.9066		
0.8	$31.33{ }^{\circ}$	0.0008454	0.0255	9	245.88	99.56	168.62	266.18	0.3656	0.9054		
0.9	35.53	0.0008576	0.0226	98.79	247.77	105.29	162.68	267.97	0.3838	0.9043		
1.0	39.39	0.0008695	0.0202	104.42	251.03	115.76	155.23	270.99	0.4164	0.9023		
1.2	46.32	0.0008928	0.0			125.26	148.14	273.40	0.4453	0.9003		
1.4	52.43	0.0009159	0.0140	123.98		134.02	141.31	275.33	0.4714	0.8982		
1.6	57.92	0.0009392	0.0121	132.5	257.88°	142.22	134.60	276.83	0.4954	0.8959		
1.8	62.91	0.0009631	0.0105	140.49	259.41	149.99	127.95	277.94	0.5178	0.8934		
2.0	67.49	0.0009878	0.0093	148.02	261.84	168.12	111.06	279.17	0.5687	0.8854		
2.5	. 77.59	0.0010562	0.0069	165.48	262.16	185.30	92.71	278.01	0.6156	0.8735		
3.0	86.22	0.0011416	0.0053	181.08								

TABLEA-13

TABLEA-13

Source: Adapled from K. Wark. Thernadÿnamics. 4ih ed., McGraw.Hill, New York.t1983, as bascd on "Tables of Thermal Properiles of Gascs," NBS Circular 564, 1955.
table A-17 Ideal Gas Propertics of Nilrogen, N_{2}
$T(\mathrm{~K}), \bar{h}$ and $\bar{\pi}(\mathrm{kJ} / \mathrm{kmol}), \bar{s}^{\circ}(\mathrm{kJ} / \mathrm{kmol} \cdot \mathrm{K})$
$\left[\bar{h}_{f}^{0}=0 \mathrm{~kJ} / \mathrm{kmol}\right]$

T	\bar{h}	\bar{u}	${ }^{\circ}$
0	0	0	0
220	6,391	4.562	182.639
230	6,683	4,770	181.938
240	6.975	4,979	185.180
250	7.266	5,188	186.370
260	7,558	5,396	187.514
270	7,849	5,604	188.614
280	8,141	5,813	189.673
290	8,432	6.021	190.695
298	8,669	6,190	191.502
300	8,723	6.229	191.682
310	9;014	6,437	192.638
320	9.306	6,645	193.562
330	9,597	6,853	194.459
340	9,888	7,061	195.328
350	10,180	7,270	196.173
360	10.471	7.478	196.995
370	10,763	7,687	197.794
380	11,055	7,895	198.572
390	11,347	8,104	199.331
400	11,640	8,314	200.071
410	11,932	8,523	200.794
420	12,225	8,733	20.489
430	12,518	8.943	202.189
440	12.811	9,153	202.863
450	13,105	9,363	203.523
460	13,399	9.574	204.170
470	13,69]	9.786	204.801
480	13,988	9,997 10,210	205.424 206.033
490	14.285	10,210	206.033
501	14,581	10,423	206.630
510	14,876	10,635	207.21
520	15,172	10,848	207.792
530	15,469	11,062	208.358
540	15,766	11,277	208.91
550	16,064	11,492	209.46
S60	16,363	11,707	209.95
570	16,662	11.923	210.52
580	16,462	12,139	211.04
580	17,262	12.356	211.56

T	\bar{h}	\#	5°
600	17,563	12.574	212.066
610	17,864	12,792	212.564
620	18,166	13.011	213.055
630	18,468	13,230	213.541
640	18,772	13.450	214.018
650	19,075	13,671	214.489
660	19,380	13.892	214.954
670	19,685	14,114	215.413
680	19,991	14,337	5.866
690	20,297	14,560	216.314
700	20,604	14,784	216.756
710	20,912	15,008	7.192
720	21,220	15,234	217.624
710	21,529	15.460	218.059
740	21,839	15.686	218.472
750	22,149	15,913	218.889
760	22,460	16,141	219.301
770	22,712	16,370	219.709
780	23,085	16,599	220.113
790	23,398	.16.830	220.512
800	23,714	17.061	220.907
810	24,027	17,292	221.298
820	24,342	17,524	221.684
830	24,658	17.757	222.067
840	24,974	17.990	222.447
850	25,292	18,224.	222.822
860	25,610	18,459	223.194
870	25,928	18,695	223.562
880	26,248	18.931	223.927
890	26,568	18,168	224.288
900	26,890	19.407	224.647
910	27,210	19,644	225.002
920	27,532	19,883	225.351
930	27,854	20,122	225.701
940	28,178	20,362	226.047
950	28,501	20,603	226.389
960	28,826	20,844	226.728
970	29.151	21,086	227.064
980	29.476	21,328	227
990	29.803	21.571	227.7

z

17 of 22

Table A-18 Ideal Gas Properies of Oxygen, O_{2}
$T(\mathrm{~K}), \bar{h}$ and $\tilde{u}(\mathrm{~kJ} / \mathrm{kmol}), \mathcal{J}^{\circ}(\mathrm{kJ} / \mathrm{kmol} \cdot \mathrm{K})$

$$
\left[\bar{h}_{j}^{0}=0 \mathrm{~kJ} / \mathrm{kmol}\right]
$$

T	\bar{h}	$\overline{4}$	5°
0	0	0	\bigcirc
220	6,404	4.575	196.171
230	6,694	4.782	197.461
240	6.984	4,989.	198.696
250	7.275	5.197	199.885
260	7,566	5,405	201.027
270	7.858	5,613	202.128
280	8,150	5.822	203.191
290	8,443	6,032	204.218
296	8.682	6.203	205.033
100	8,736	6.242	205.213
310	9,010	6,453	206. 177
330	9.325	6.664	207.112
330	9.620	6.877	208.020
340	9.916	7,090	208.904
350	10,2!3	7,303	209.765
360	10,511	7.518	210.604
370	10.809	7,733	211.423
380	11,109	7.949	212.222
390	11,409	8,166	213.002
400	11.751	8,384	213.765
410	12,012	8.603	214.510
420	12.314	8,822	215.241 215.955
430	12,618	9,043 9.264	215.955 216.656
440	12,923	9.264	216.656
450	13,228	9.487	217.342
460	13.535	9.710	218.016
470	13,842	9.935	218.676
480	14,151	10,160	219.326
490	14,460	10,386	219.963
500	14.770	10,614	220.589
510	15,082	10,842	221.206
520	15,395	11,071	221.812
5311	15,708	11,301	222.409
540	16,022	11,5, 3	222.997
550	16,338	11.765	223.576
5510	16,654	11,998	124.146
570	16.971	12,232	224.708
580	17,290	12,467	225.262
590	17.609	12,703	225.808

T	\bar{h}	u	5°
600	17,929	12.940	226.346
610	18,250	13.178	226.877
620	18,572	13.417	227.400
630	18,895	13,657	227.918
640	19,219	13,898	228.429
650	19,544	14,140	228.032
660	19,870	14,383	229.430
670	20,197	14,626	229.920
680	20,524	14,871	230.405
690	20,854	15,116	230.885
700	21,184	15,364	231.358
710	21,514	15,611	231.827
720	21,845	15,859	232.291
730	22,177	16.107	232.748
740	22,510	16,357	231.201
750	22,844	16,607	233.649
760	23,178	16,859	234.091
770	23,513,	17,111	234.528
780	23,850	17,364	234.960
790	24,186.	17,618	235.387
800	24,523	17,872	235.810
810	24,861	18,126	236.230
820	25, 199	18,382	236.644
830	25,537	18,637	237.055
840	25.877	18,893	237.462
850	26,218	19,150	237.864
860	26,559	19,408	238.264
870	26,899	19,666	238.660
880	27,242	19,925	239.051
890	27,584	20,185	239.439
900	27,928	20,445	239.821
910	28,272	20,706	240.201
920	28,616	20,967	240.580
930.	28,960	21.228	240.953
940	29,306	21,491	241.323
950	29,652	21,754	241.689
960	29,999	22,017	242052
970	30,345	22,280	242411
980	30,692	22,544	242.768
990	31,041	22.809	243.120

TAbLE A- 19 Idcal Gas Properties of Walcr Vapor, $\mathrm{H}_{2} \mathrm{O}$
$T(\mathrm{~K}), \overline{\mathrm{h}}$ and $\widetilde{u}(\mathrm{~kJ} / \mathrm{kmol}) \dot{\bar{s}}^{\mathrm{s}}(\mathrm{kJ} / \mathrm{kmol} \cdot \mathrm{K})$
$\left[\vec{h}_{\rho}^{0}=-241,820 \mathrm{~kJ} / \mathrm{kmol}\right]$

TABLE A-22 Ideal Gas Properties of Air

$T(\mathrm{~K}), h$ and $u(\mathrm{~kJ} / \mathrm{kg}), s^{\circ}(\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K})$											
T	h	P,	4	0^{\prime}	5	T	h	p.	u	Dr	ת
200	199.97	0.3363	142.56	1707.	1.29559	450	451.80	5.775	322.62	223.6	2.11161
210	209.97	0.3987	149.69	1512.	1.34444	460	462.02	6.245	329.97	211.4	2.13407
220	219.97	0.4690	156.82	1346.	1.39105	470	472.24	6.742	337.32	200.1	2.15604
230	230.02	0.5477	164.00	1205.	1.43557	480	482.49	7.268	344.70	189.5	2.17760
240	240.02	0.6355	171.13	1084.	1.47824	490	492.74	7.824	352.08	179.7	2.19876
250	250.05	0.7329	178.28	979.	1.51917	500	503.02	8.411	359.49	170.6	2.21952
260	260.09	0.8405	185.45	887.8	1.55848	510	513.32	9.031	366.92	162.1	2.23993
270	270.11	0.9590	192.60	808.0	1.59634	520	523.63	9.684	374.36	154.1	2.25997
280	280.13	1.0889	199.75	738.0	1.63279	530	533.98	10.37	381.84	146.7	2.27967
285	285.14	1.1584	203.33	706.1	1.65055	540	544.35	11.10	389.34	139.7	2.29906
290	290.16	1.2311	206.91	676.1	1.66802	550	554.74	11.86	396.86	133.1	2.31809
295	295.17	1.3068	210.49	647.9	1.68515	560	565.17	12.66	404.42	127.0	2.33685
300	300.19	1.3860	214.07	621.2	1.70203	570	575.59	13.50	411.97	121.2	2.35531
305	305.22	1.4686	217.67	596.0	1.71865	580	586.04	14.38	419.55	115.7	2.37348
310	310.24	1.5546	221.25	572.3	1.73498	590	596.52	15.31	427.15	110.6	2.39140
315	315.27	1.6442	224.85	549.8	1.75106	600	607.02	16.28	434.78	105.8	2.40902
320	320.29	1.7375	228.42	528.6	1.76690	610	617.53	17.30	442.42	101.2	2.42644
325	325.31	1.8345	232.02	508.4	1.78249	620	628.07	18.36	450.09	96.92	2.44356
330	330.34	1.9352	235.61	489.4	1.79783	630	638.63	19.84	457.78	92.84	2.46048
340	340.42	2.149	242.82	454.1	1.82790	640	649.22	20.64	465.50	88.99	2.47716
350	350.49	2.379	250.02	422.2	1.85708	650	659.84	21.86	473.25	85.34	2.49364
360	360.58	2.626	257.24	393.4	1.88543	660	670.47	23.13	481.01	81.89	2.50985
370	370.67	2.892	264.46	367.2	1.91.313	670	681.14	24.46	488.81	78.61	2.52589
380	380.77	3.176	271.69	343.4	1.94001	680	691.82	25.85	496.62	75.50	2.54175
390	390.88	3.481	278.93	321.5	1.96633	690	702.52	27.29	504.45	72.56	2.55731
400	400.98	3.806	286.16	301.6	1.99194	700	713.27	28.80	512.33	69.76	2.57277
410	411.12	4.153	293.43	283.3	2.01699	710	724.04	30.38	520.23	67.07	2.58810
420	421.26	4.522	300.69	266.6	2.04142	720	734.82	32.02	528.14	64.53	2.60319
430	431.43	4.915	307.99	251.1	2.06533	730	745.62	33.72	536.07	62.13	2.61803
440	441.61	5.332	315.30	236.8	2.08870	740	756.44	35.50	544.02	59.82	2.63280

TABLE A-22 (Continued)

$T(\mathrm{~K}), h$ and $\mu(\mathrm{kJ} / \mathrm{kg}), s^{\bullet}(\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K})$				v_{1}	5	T	h	p,	4	u.	
T	h	Pr	$\boldsymbol{4}$								$5{ }^{\circ}$
750	767.29	37.35	551.99	57.63	2.64737						
760	778.18	39.27	560.01	55.54	2.66176	1300	1395.97 1419.76	330.9 352.5	1022.82	11.275	3.27345
770	789.11	41.31	568.07	53.39	2.67595	1340	1419.76 1443.60	352.5 375.3	1040.88 1058.94	10.747 10.247	3.29160 3.30959
780	800.03	43.35	576.12	51.64	2.69013	1360	1467.49	399.1	1077.10	10.247 9.780	3.30959 3.32724
790	810.99	45.55	584.21	49.86	2.70400	1380	1491.44	424.2	1095.26	9.337	3.34474
800	821.95	47.75	592.30	48.08	2.71787	1400	1515.42	450.5			
820	843.98	52.59	608.59	44.84	2.74504	1420	. 1539.44	478.0	1113.52 1131.77	8.919 8.526	3.36200 .
840	866.08	57.60	624.95	41.85	2.77170	1440	1563.51	506.9	1150.13	8.526 8.153	3.39586
860	888.27	63.09	641.40	39.12	2.79783	1460	1587.63	537.1	1168.49	7.801	3.41247
880	910.56	68.98	657.95	36.61	2.82344	1480	1611.79	568.8	1186.95	7.468	3.42892
900	932.93	75.29	674.58	34.31	2.84856	1500	1635.97	601.9	1205.41	7.152	3.44516
920	955.38	82.05	691.28	32.18	2.87324	1520	1660.23	636.5	1223.87	6.854	3.46120
940	977.92	89.28	708.08	30.22	2.89748	1540	1684.51	672.8	1242.43	6.569	3.47712
960	1000.55	97.00	725.02	28.40	2.92128	1560	1708.82	710.5	1260.99	6.301	3.49276
980	1023.25	105.2	741.98	26.73	2.94468	1580	1733.17	750.0	1279.65	6.046	3.50829
1000	1046.04	114.0	758.94	25.17	2.96770	1600	1757.57	791.2	1298.30	5.804	3.52364
1020	1068.89	123.4	776.10	23.72	2.99034	1620	1782.00	834.1	1316.96	5.574	3.53879
1040	1091.85	133.3	793.36	22.39	3.01260	1640	1806.46	878.9	1335.72	5.355	3.55381
1060	1114.86	143.9	810.62	21.14	3.03449	1660	1830.96	925.6	1354.48	5.147	3.56867
1080	1137.89	155.2	827.88	19.98	3.05608	1680	1855.50	974.2	1373.24	4.949	3.58335
1100	1161.07	167.1	845.33	18.896	3.07732	1700	1880.1	1025	1392.7	4.761	3.5979
1120	1184.28	179.7	862.79	17.886	3.09825	1750	1941.6	1161	1439.8	4.328	3.6336
1140	1207.57	193.1	880.35	16.946	3.11883	1800	2003.3	1310	1487.2	3.944	3.63884
1160	1230.92	207.2	897.91	16.064	3.13916	1850	2065.3	1475	1534.9	3.601	3.6684 3.7023
1180	1254.34	222.2	915.57	15.241	3.15916	1900	2127.4	1655	1582.6	3.295	3.7354
1200	1277.79	238.0	933.33	14.470	3.17888	1950	2189.7	1852	1630.6		
1220	1301.31	254.7	951.09	13.747	3.19834	2000	2252.1	2068	1678.7	2.776	3.7677 3.7994
1240	1324.93	272.3	968.95	13.069	3.21751	2050	2314.6	2303	1726.8	2.555	3.8303
1280	1348.55 1372.24	290.8 310.4	986.90	12.435	3.23638	2100	2377.4	2559	1775.3	2.356	3.8605
	1372.24	310.4	1004.76	11.835	3.25510	2150	2440.3	2837	1823.8	2.175	3.8901
			-	-	.	2200	2503.2	3138	1872.4	2.012	3.9191
						2250	2566.4	3464	1921.3	1.864	3.9474

[^0]

[^0]: Sokree: Adnpted from K. Wark, Thermodynamies, 4th ed., McGraw-Hill, New York, 1983, as based on J. H. Keenan and J. Kaye, Gas
 Tables. Wiley. New York, 1945.

