National Exams May 2011
04-BS-1, Mathematics
3 hours Duration

Notes:

1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
2. NO CALCULATOR is permitted. This is a CLOSED BOOK exam. However, candidates are permitted to bring ONE AID SHEET written on both sides.
3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
4. All questions are of equal value.

Marking Scheme:

1. 20 marks
2. 20 marks
3. 20 marks
4. 20 marks
5. 20 marks
6. 20 marks
7. 20 marks
8. 20 marks
9. Compute the response of the damped mass-spring system modelled by

$$
y^{\prime \prime}+3 y^{\prime}+2 y=r(t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

where r is the square wave

$$
r(t)= \begin{cases}1, & 1 \leq t<2 \\ 0, & \text { otherwise }\end{cases}
$$

and ' clenotes differentiation with respect to time.
2. Solve the initial value problem

$$
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=\pi^{2} t^{4} \sin \pi t, \quad y(1)=5, \quad y^{\prime}(1)=5+\pi
$$

where 'denotes differentiation with respect to t.
3. Find the general solution, $y(x)$, of the differential equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=3 e^{-x} \cos 2 x
$$

where' denotes differentiation with respect to x.
4. An elastic membrate in the $x_{1} x_{2}$-plane with boundary circle $x_{1}^{2}+x_{2}^{2}=1$ is stretched so that a point $P:\left(x_{1}, x_{2}\right)$ goes over into the point $Q:\left(y_{1}, y_{2}\right)$ given by

$$
\begin{aligned}
& y_{1}=5 x_{1}+3 x_{2}, \\
& y_{2}=3 x_{1}+5 x_{2} .
\end{aligned}
$$

Find the principal directions of the transformation. These are the directions of the position vectors x of all points P for which the direction of the position vector y of Q is the same or exactly opposite. What shape does the boundary circle take under the deformation?
5. Evaluate the surface integral $\iint_{S} \mathrm{~F} \cdot d S$, where

$$
\mathrm{F}(x, y, z)=4 x \mathrm{i}+2 x^{2} \mathrm{j}-3 \mathrm{k}
$$

S is the surface of the region bounded by the cone $z=4-\sqrt{x^{2}-y^{2}}$ and the plane $z=0$.
6. Let C be the curve formed by the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $z=1+y$, and let \mathbf{v} be the vector function $\mathbf{v}=4 z \mathbf{i}-2 x \mathbf{j}+2 x \mathrm{k}$. Evaluate the line integral $\oint_{C} \mathrm{v} \cdot \mathrm{dr}$. Assume a clockwise orientation for the curve when viewed from above.
7. Find a formula for the plane tangent to the surface $z=f(x, y)$ with $f(x, y)=1+x \ln (x y-5)$ at the point $(2,3)$ and use the tangent plane to approximate $f(1.9,3.05)$.
8. Find the minimum value of the function $F(x, y, z)=2 x^{2}+y^{2}+3 z^{2}$ subject to the constraint $x+y-z=7$.

